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Abstract
This paper gives a survey of the particle dynamics in the liquid alkali
metals observed with inelastic x-ray and neutron scattering experiments.
Liquid rubidium and sodium are chosen as model fluids to represent the
behaviour of this group of fluids. In the dense metallic monatomic melt the
microscopic dynamics is characterized by collective excitations similar to those
in the corresponding solids. The collective particle behaviour is appropriately
described using a memory function formalism with two relaxation channels for
the density correlation. A similar behaviour is found for the single particle
motion where again two relaxation mechanisms are needed to accurately
reproduce the experimental findings. Special emphasis is given to the density
dependence of the particle dynamics. An interesting issue in liquid metals is
the metal to non-metal transition, which is observed if the fluid is sufficiently
expanded with increasing temperature and pressure. This causes distinct
variations in the interparticle interactions, which feed back onto the motional
behaviour. The associated variations in structure and dynamics are reflected
in the shape of the scattering laws. The experimentally observed features are
discussed and compared with simple models and with the results from computer
simulations.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Since the early studies on diffusion by Robert Brown about 170 years ago, the search for a broad
understanding of the particle motion in liquids has attracted numerous scientists worldwide and
this type of research is still an extraordinarily challenging task from the theoretical as well as
from the experimental point of view. Despite the enormous efforts that have been invested in
this field over the last 50 years and the vast number of excellent experimental and theoretical
results, we are still far from fully comprehending the collective and single particle motion of
atoms and molecules in disordered fluid phases on a microscopic scale and relating it to the
bulk properties of a liquid. There is still much that needs to be done.

In order to understand at least the basic concepts of the particle motion in fluid systems,
much work was focused on the so called ‘simple liquids’, which by definition are composed
of particles interacting through radial symmetric central forces and which do not comprise
internal degrees of freedom. Two prominent examples seem perfectly to obey this classification,
the fluid noble gases and the liquid alkali metals, and in fact both have been objects of
investigation in numerous scattering experiments, molecular dynamics (MD) simulations and
also many theoretical approaches over the past five decades. However, except the common
classification of being simple, the two systems do not really have much in common. This is
already apparent from the different thermophysical properties, e.g. the temperature/pressure
ranges where the liquids coexist with their vapour phases. The normal pressure melting points
of the noble gases—if available at all—range from about 25 K for neon up to 161 K for xenon,
and in all cases the liquid–vapour coexistence curves extend only over a few degrees. In
contrast, the melting temperatures of the alkalis extend from room temperature conditions for
caesium (29 ◦C) to about 181 ◦C for lithium, and they all comprise very wide liquid–vapour
coexistence ranges with high critical temperatures (see [1]). The microscopic properties in
both systems also significantly differ. It is now a well established fact that the dynamics
in molten alkali metals is strongly influenced by distinct collective modes, which extend
down to wavelengths comparable to interatomic separations, similar to the phonons in the
corresponding crystalline solids. In liquid noble gases, such excitations are only well defined at
long wavelength, where they are rather interpreted as classical density fluctuations. Of course,
all these characteristic discrepancies have their origin in the specific particle interactions,
which are fundamentally different for both systems: in a noble gas, the valence electrons are
localized and the interparticle potentials result from dispersion forces, which have their origin
in the polarizability of the electron cloud around each atom. This situation leads to the well
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known Lennard-Jones pair potentials for the noble gases, which account quite well for the
thermophysical properties of the dense liquids as well as for the dilute gas phase:

V (r) = 4ε

[(r0

r

)12 −
(r0

r

)6
]

. (1.1)

ε and r0 are characteristic constants specific for each element of this group; they determine
the depth of the potential well and the position of the first zero in V (r), respectively. The
Lennard-Jones potentials are real pair potentials. This means that the influence of a third
particle on the polarization induced between a certain pair of atoms remains small even in a
dense liquid. Hence, the total potential energy of the system can always be expressed as a sum
of pair interactions and equation (1.1) is valid at all densities. In fact, a common procedure for
liquid state theory is to determine the parameters in equation (1.1) using measured properties
from the gas phase.

The situation is completely different for the liquid alkali metals, where each atom
contributes one single electron to a delocalized electron gas. Such a system is better described
as an arrangement of positively charged ions embedded into a negatively charged electronic
background. In the common approach the interparticle interactions are constructed from
Coulombic forces, screened by the negative charge distribution of the conduction electrons.
Hence, the potentials between the particles in a metal rather result from the collective behaviour
of the electrons and ions than from simple two particle correlations. This already makes it
clear that the term ‘simple liquid’ is a crude oversimplification for the fluid alkali metals.
Additionally, in contrast to the non-conducting liquid noble gases where equation (1.1)
describes the particle interaction along the whole range of the liquid state, for a metal no
such potential can exist which is valid along the full liquid density range. No matter how
the potential energy in a metal is formulated, one always has to take into account the influence
of the electron gas on the ionic cores. Therefore, such a description must always be a function
of the electron density and hence of the metal density itself. In order to maintain the concept
of pairwise interactions also in liquid metals pseudo-potential theory was ‘invented’, which
allows the computation of the so-called effective pair potentials. They take into account a
specific empty core interaction for the bare ions screened by the surrounding electron density.
Several useful effective pair potentials have been suggested over the last 30 years. One of the
most prominent, which has widely found application, is the so called Price potential [2]:

V (r) = (Ze)2

r

[
1 − 2

π

∫ ∞

0
G(Q)

sin(Qr)

Qr
dQ

]
. (1.2)

Here, Z defines the ionic charge and G(Q) is a function containing the Fourier transform of
the Ashcroft empty core pseudopotential [3] together with a modified Q-dependent dielectric
function [4]. The latter depends on density through the Fermi wavevector kF. This potential
was shown to reproduce the thermophysical properties of dense liquid sodium remarkably
well. Also, structural and dynamical features of the liquid alkali metals were calculated and a
reasonable agreement with MD data [5] was found. For argon and sodium, which both belong
to the same row in the periodic table, the respective pair potentials obtained from equations (1.1)
and (1.2) are compared in figure 1.

The differences between the potentials are apparent: the well depth is considerably larger
for the metal, and while the Lennard-Jones potential asymptotically returns to zero the Price
potential shows an oscillatory behaviour with increasing r . These are the so called Friedel
oscillations, which formally originate from a discontinuity of the dielectric function at 2kF. It
also turns out that the repulsive part of the Lennard-Jones interaction is considerably steeper
than for the metal (see the inset in figure 1). The latter has an important influence on the
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Figure 1. Pair potentials for argon (dashed line) and sodium at 373 K (solid line) obtained from
equations (1.1) and (1.2). In the inset the energy scale is extended to higher values to demonstrate
the difference in the repulsive contribution.

microscopic collective motion of the particles as was recently demonstrated by a series of
MD simulations on corresponding model systems [6].

Since potentials like (1.2) contain the density dependent variable kF they may in fact
be applicable along a limited density range for which the assumption of a free electron gas,
necessary to account for the screening, holds. However, they can never cover the full density
range of the liquid metal, which extends from melting point conditions up to the liquid–vapour
critical point. At sufficiently reduced densities the screening of the ionic Coulomb potentials
breaks down and the electrons start to localize, i.e. a metal to insulator transition sets in. For the
liquid alkali metals this occurs if the density is reduced to about three to two times the critical
density ρcrit [1, 7].

When the electrons localize, the resulting ns1-electronic configuration of the neutral alkali
atoms favours the formation of molecular aggregates, and in fact dimer–monomer equilibria are
well known from the dilute vapour, where all electrons are localized and the alkalis are clearly
insulating. Molecular aggregates may therefore be expected if electron localization in the liquid
can no longer be suppressed, say, below 3ρcrit. The investigation of the metal to non-metal
transition and its associated features is not possible employing conventional MD simulations,
since potentials like the one in equation (1.2) are not able to cope with the localization
of the conduction electrons. Hence, the failure of these methods to accurately reproduce
the dynamical properties in this temperature/density range is not unexpected. However, the
electron localization and also the subsequent formation of molecule-like aggregates can be
simulated employing modern ab initio methods [8–10] and in fact the results obtained from
such calculations are in very good agreement with the experimental observations.

Since the metal to non-metal transition in liquid alkali metals is associated with such
high temperatures that thermal ionization must also be taken into account, complicated
thermal equilibria between atomic ions, electrons, neutral atoms, molecular structures and
their corresponding charged counterparts are expected to control structure and dynamics of
such a fluid. Regarding the hot fluid as a weakly ionized plasma, the density dependent
concentrations of these species can in principle be calculated using standard methods of
chemical thermodynamics and statistical mechanics. For fluid caesium such calculations were
carried out [11]; the result is shown in figure 2. It turns out that below about twice the critical
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Figure 2. Relative fraction of species in hot low density fluid caesium. The solid line gives the
density dependence of the free electron concentration, the dash–dotted line that of Cs dimers, the
dotted line Cs+

2 and the dashed line neutral Cs atoms. Critical density at ρ/ρcrit = 1 (vertical dotted
line).

density the hot fluid is in fact a mixture of ionized and neutral atoms, dimers, charged dimers
and freely moving electrons.

Apparently, depending on density the liquid alkali metals show a diverse variety of
interesting features: at high densities the liquid comprises a unique solid-like behaviour
characterized by distinct collective motions on a microscopic scale, while at sufficiently
reduced particle density, driven by electron localization, intrinsic chemical variations occur
which considerably influence the atomic and molecular structure of these systems. We therefore
regard it as a scientific challenge of the first order to seek for a microscopic understanding of
the characteristic changes that take place during the continuous expansion of a liquid alkali
metal, and from the experimental point of view inelastic scattering experiments appear to be
ideally suited for this task.

In this review we are discussing the characteristic changes in the particle motion which
are observed if a liquid alkali metal is expanded with increasing temperature and pressure. The
considered density range extends from melting point conditions up to the low density region in
the vicinity of the liquid vapour critical point. The experimental data we are referring to have
been obtained from inelastic neutron- and x-ray scattering experiments on liquid sodium and
on liquid rubidium. Although data are only presented for these two metals, we think that the
observed properties and the conclusions that are drawn from the data analysis also hold for the
other members of this group. The general ability to scale the physical properties of liquid alkali
metals has been widely demonstrated in the past. E.g., Hensel and co-workers have shown that
the thermophysical properties of the alkali metals seem perfectly to obey the so called law of
corresponding states, i.e. the phase diagrams from sodium to caesium coincide if appropriately
scaled (see [1, 14] and references therein). Also, the structure factors for Na, K, Rb and Cs
coincide after suitable scaling [12]. Only the inclusion of lithium seems to be a problem [13]
although the features of the dynamic scattering law appear to be identical to those of other
alkali metals [27, 62, 63]. The same scalability is found for the dynamic properties of Na, K,
Rb and Cs as obtained from computer simulations, where it is also shown that experimental
data on Cs scaled in the same way do also coincide on the calculated curves [80]. Hence, we
suppose that the dynamic microscopic features can as well be scaled and that properties found
in liquid sodium and rubidium are indeed characteristic for the other liquid alkalis, although
differences from liquid lithium might exist.
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Figure 3. Schematic representation of a liquid/vapour phase diagram for an alkali metal in the
p–T - and ρ–T -planes. p, T and ρ are normalized to critical values. Triangles show INS and
IXS experiments on liquid Na; circles represent INS experiments on liquid Rb. Dashed line AB
corresponds to a temperature rise at constant pressure, i.e. the conventional evaporation procedure.
Solid line, coexistence curve; dotted line, possible path to expand a liquid continuously without
inducing a liquid–vapour phase transition.

2. Experimental aspects

2.1. Sample handling

The liquid state extends over wide density ranges from melting point conditions up to the
liquid–vapour critical point. For a comprehensive understanding and characterization of a
specific liquid it is therefore essential to extend any investigations along this entire range if
this is experimentally feasible. The ability to vary the liquid density continuously from melting
towards the low density regime close to the liquid–vapour critical point is hence an absolutely
indispensable requirement. This can only be accomplished if temperature and pressure of
the sample are simultaneously varied, e.g. along the liquid vapour coexistence curve to avoid
evaporation. This is indicated in figure 3 by the dotted line. The figure shows two ways to
transfer a liquid into the vapour phase. The dashed line from A to B corresponds to the normal
evaporation process at constant pressure while along the dotted line p and T are simultaneously
varied and the liquid continuously transforms into the gaseous state without crossing the vapour
pressure curve (solid line), i.e. the two phase region of the system. Also given in the figure are
some p–T -points representing the conditions where the scattering experiments were carried out
which are reported in this review. To access the low density regime of a liquid, conditions close
to the liquid–vapour critical point (CP) need to be approached. Unfortunately, in the case of the
liquid alkali metals the critical points lie at extremely high temperatures and also at elevated
pressures, conditions which are difficult to realize experimentally (see corresponding values in
table 1).
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Table 1. Critical temperatures and critical pressures of the liquid alkali metals [14]. Values for Li
are taken from [15].

Tcrit (K) pcrit (bar) ρcrit (g cm−3)

Li ∼3500 ∼380 ∼0.11
Na 2485 244 0.175
K 2178 146 0.17
Rb 2017 122.8 0.29
Cs 1924 91.3 0.38

Many experimental efforts were undertaken over the past 40 years to cope with the extreme
conditions of temperature and pressure and also with the extremely corrosive nature of the
molten metals. A large number of experiments were carried out, e.g. measurements of the
equation of state data, the electrical and magnetic properties and also scattering experiments to
determine the characteristic variations in microscopic structure associated with the expansion
of the metals (for an excellent review see [1] and references therein). More recently,
these techniques were appropriately modified to be also applicable in inelastic scattering
experiments [16, 17]. Despite the progress in the development of high temperature and high
pressure sample environments for neutron and x-ray scattering, it must be kept in mind that such
experiments are still extremely sophisticated and a lot of experience is needed to successfully
perform these investigations.

2.2. Experimental techniques

An increased interest in particle dynamics in disordered systems could be observed over the past
few years. Responsible for this renewed attention are mainly two technological developments:
one important impulse came from the recent rapid increase in computer speed which allowed
the MD simulations to be carried out with realistic particle numbers over sufficiently long
timescales to comprehensively explore the microscopic motion. The big advantage of these
‘computer experiments’ is that even those dynamical functions that cannot usually be accessed
in real experiments are available. Also, pair potentials can be tested from comparing structural
and dynamical properties of the computer generated model systems with real experimental data.

The second advancement is purely experimental and related to the advent of the third
generation synchrotrons over the last ten years, through which a large number of ingenious
x-ray techniques became available. Among them and of fundamental importance for the field
of liquid dynamics was the development of high resolution inelastic x-ray scattering (IXS). The
basic concepts of this technique have already been outlined many years ago [18, 19]; however,
the simultaneous requirement of high resolution and sufficiently high flux has hampered this
method for a long time. Over the last decade, many technical difficulties were solved, partly due
to the new synchrotrons but also due to technical and material related improvements of those
components needed for high resolution energy discrimination of the x-rays [20–23]. Although
inelastic neutron scattering (INS) is still the most used technique to study liquid dynamics
and in many aspects it may still be superior over x-rays, the new technique comprises specific
advantages compared to neutrons which makes it perfectly suited for the investigation of the
collective dynamics in condensed matter. Firstly, the scattered radiation is purely coherent
over the energy range where particle dynamics is studied. In neutron scattering, many nuclei
contribute a considerable incoherent intensity, which often dominates the scattering law and
hinders accurate measurements of the collective dynamics. E.g., for liquid sodium it has never
been possible to sufficiently separate the incoherent scattering from the neutron data to obtain
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Figure 4. Available Q–�E-range for different time of flight spectrometers (all at the ILL), where
�E determines the energy transfer. IN6 (full lines), IN4 (dotted line) and BRISP (dashed lines).
Also shown are dispersion relations of the collective excitations in Li (•), Na (◦) and Rb (�).
Angles on the right-hand side of the figure determine minimum and maximum angles available at
the IN6 instrument.

the purely coherent dynamic scattering law S(Q, ω) [24–26] as both contributions are of the
same order.

Secondly, and perhaps even more important, is the fact that S(Q, ω) measured with IXS
is not hampered by any kinematical restrictions: in an inelastic scattering experiment the
dependence of the measured momentum transfer �Q = �kf − �ki on the scattering angle 2ϑ is
given by

Q2(2ϑ, �ki) = k2
f + k2

i − 2kfki cos(2ϑ), (2.1)

where �ki is the initial momentum of the probe and �kf is the momentum after the scattering event.
Inserting the energy–momentum relation for the neutron or the photon into equation (2.1)
along with the experiment specific parameters (incident energy and scattering angles) yields
the kinematic plane for a particular experiment. For thermal neutrons the incident energy is
always of the order of the energy transfer, hence |kf| and |ki| may noticeably differ. In this
case the available part of the kinematic plane restricts the access of larger energy transfers
considerably, especially at lower Q. Figure 4 illustrates this situation. There, as an example,
the kinematic plane of the time of flight spectrometer IN6 at the ILL in Grenoble, one of
the most famous instruments worldwide, is shown for the largest incoming neutron energy
available there (4.88 meV). It is confined by the minimum and maximum scattering angles
of 10◦ and 114◦. The Q–�E-variation at constant angle is exemplarily shown by two paths
at 30◦ and 60◦, respectively, where �E gives the energy transfer of the scattered neutron in
meV. Also depicted are the Q–ω-positions of the collective longitudinal excitations for liquid
lithium [27], sodium [28] and rubidium [29]. It is apparent that they are hardly accessible with
this spectrometer, especially in the lower momentum transfer region, where the energy of the
phonon-like modes increases monotonically with rising Q and where they are well defined.

The rise of the excitation energy in the lower Q-region is approximately determined by the
bulk sound velocity in the sample (see section 4.2). Since the slopes of the dispersion relations
(symbols in figure 4) give the corresponding phase velocity, this part of the dispersion relation
can only be measured if the speed of the incoming neutron is larger than the sound velocity in
the sample.
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Table 2. Available monochromator settings at the new small angle time of flight spectrometer
BRISP.

Monochromator
crystal E0 λ0

PG(004)a 80.3 1.009
Cu(111) 51.9 1.255
PG(002)a 20.1 2.018
Cu(220) 138.3 0.769
Cu(200) 69.2 1.087

a PG: highly oriented pyrolytic graphite.

To improve the kinematic situation, higher incoming neutron velocities are needed, which,
however, hampers the resolution, and generally shifts the accessible momentum transfer range
to higher Q. Therefore, it is also necessary to reduce the minimum scattering angle. The dotted
line in figure 4 represents the Q–ω-path of the 2ϑ = 3◦ angle-spectrum of the IN4 spectrometer
of the ILL, which can be operated with an incoming energy of 100 meV. Still the Na-dispersion
relation is only partly available and data for Li are still out of reach. There exist current efforts
to improve the situation in developing the new Brillouin spectrometer BRISP at the ILL in
Grenoble [30]. This spectrometer is particularly designed to measure wider energy ranges in
the lower Q-region. From the technical viewpoint, it combines time of flight techniques of
high energy neutrons with small angle capabilities. It represents hence a perfect opportunity
for Brillouin investigations but also for other studies where an extended kinematic plane at
lower Q is needed, e.g. measurements of the incoherent contribution or dynamic magnetic
form factors. The instrument is capable of being operated at an incoming energy of 138.3 meV
with a minimum scattering angle of 0.5◦. The kinematic plane for this setting is also shown
in figure 4. The energy resolution is expected to be 2.5–7.0% of the incoming neutron energy.
Some information about the possible monochromator settings on BRISP is given in table 2.

The situation at pulsed neutron sources like ISIS is somewhat different. There, two types
of inelastic neutron spectrometers exist, those where a characteristic neutron wavelength can be
chosen out of the white neutron pulse and which hence work similarly to the spectrometers at a
conventional neutron source and those where the incoming beam contains the full spectrum of
the pulse and where monochromatization is carried out before the scattered neutrons reach the
actual analyser. The latter situation leads to an inverted representation of the scattering process
in vector space, therefore these instruments are called inverted time of flight spectrometers.
However, the energies that are sorted out for acquisition are in the same range as the incoming
energies at conventional spectrometers at neutron reactors. Hence the main difference from the
kinematic planes of conventional TOF spectrometers is that the Q–ω-areas are mirror inverted
with respect to the energy scale but the access to a wider ω-range, especially at lower Q, is
limited in the same way. An example of such an instrument is the TOF spectrometer IRIS at
the ISIS neutron facility in the UK [31]. More interesting with respect to an expansion of the
kinematic plane is the other group of spectrometers at pulsed neutron sources working with
a monochromatized incoming radiation, for example the MARI spectrometer also operating
at the ISIS facility [32]. Due to the broad energy distributions of the neutron pulse, neutron
energies as high as 1000 meV can be sorted out, leading to a considerable widening of the
kinematic plane and hence to an access of larger frequencies at lower Q. However, as already
mentioned above, this gain in Q–ω-space is paid for by a considerable deterioration of the
energy resolution.

For x-rays the situation is completely different: although the incoming energy of the
photon is restricted to the few backscattering reflections of the monochromator crystal, the
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energy of the incoming photon is always very much larger than the interesting energy transfer
range (e.g. 17.9 keV for the Si (9 9 9) reflection at the ID-16 [33] of the ESRF in Grenoble
compared with at most ∼100 meV for �E). Hence, the condition |kf| ≈ |ki| is always fulfilled
and equation (2.1) reduces to

Q ≈ 2ki sin ϑ, (2.2)

i.e., the momentum transfer solely depends on the scattering angle. IXS measurements are
therefore naturally carried out at constant Q and the available energy range is virtually not
limited by the momentum transfer. Additionally, since the beam size is considerably smaller
than in a neutron experiment, angles less than 1◦ can easily be obtained, which generally allows
the measurement of wide energy transfer ranges even at low Q-values, and in principle all of the
dispersion relations shown in figure 4 can be accessed. These advantageous properties of IXS
made possible the measurement of the dynamic scattering laws for a variety of liquid systems
over the last 10 years which were either not at all attainable before or at least not with such
high quality.

3. Theoretical basics

Subsequently, a short survey is given of the basic theoretical background needed to discuss the
data presented in the following sections. This section is not intended to give a comprehensive
review of theoretical concepts in liquid dynamics but rather to summarize the basic theoretical
tools indispensable for the experimentalist to analyse inelastic scattering data of liquid systems.
For the reader who is interested in a deeper approach a large number of excellent monographs
(see e.g. [34–37]) and recent reviews (e.g. [38, 39]) exists which are more detailed and may
also be more lucidly written. Here, we will additionally concentrate solely on a classical view,
since the presented data are not discussed within the context of quantum effects.

The measured quantity in an inelastic scattering experiment is the double differential cross
section which gives the number of particles (neutrons or x-ray photons) which per unit time
are scattered into unit area r 2d	 and energy interval dω. For x-ray and neutron scattering the
double differential cross sections take the following forms [40, 41]:

(Neutrons)
∂2σ

∂	∂ω
= kf

ki
b2S(Q, ω)

(x-rays)
∂2σ

∂	∂ω
= kf

ki
(�ei · �ef)

2r 2
e | f (Q)|2S(Q, ω),

(3.1)

where b is the neutron scattering length of the nucleus under investigation, r 2
e is the Thomson

cross section of the electron · (7.95 × 10−26 cm2) and f (Q) denotes the atomic form factor.
ki and kf represent the modulus of the probe momentum before and after the scattering event
(note that kf/ki ≈ 1 for x-rays) and �ei and �ef give the direction of the electric field vector for
the x-radiation before and after scattering.

For neutrons, the scattering length b of the nuclei in a sample may statistically vary from
site to site due to the presence of different isotopes and/or different nuclear spin states. Since
the spins and different isotopes are not correlated, averaging of the scattering length leads to an
additional scattering contribution which does not show any phase correlation. This additional
intensity is accounted for by the incoherent neutron scattering cross section. Hence we have
generally two contributions to the scattering law obtained from neutron scattering which are



Topical Review R595

defined by (
∂2σ

∂	∂ω

)
coh

= kf

ki
〈b〉2 S( �Q, ω) and

(
∂2σ

∂	∂ω

)
incoh

= kf

ki

(〈
b2

〉 − 〈b〉2
)

Sincoh( �Q, ω).

(3.2)

The brackets 〈· · ·〉 in equation (3.2) and in subsequent expressions symbolize an ensemble
average. S(Q, ω) and Sincoh(Q, ω) represent the coherent and incoherent scattering laws,
respectively. One immediately sees that the incoherent contribution vanishes if there is no
fluctuation among the scattering lengths. Both functions are exclusively determined by the
properties of the sample and scattering theory yields [34]

S( �Q, ω) = 1

2π N

∫ +∞

−∞
dt e−iωt

N∑
j,k

〈
e−i �Q·�r j (0)e−i �Q·�rk (t)

〉
and

S( �Q, ω) = 1

2π N

∫ +∞

−∞
dt e−iωt

N∑
j=1

〈
e−i �Q·�r j (0)e−i �Q·�r j (t)

〉
.

(3.3)

The meaning of equation (3.3) is that we could immediately calculate the scattering law if
we a priori knew the positions of all the particles in our sample at all times or equivalently
the corresponding ensemble averages. Equations (3.3) therefore represent the link between a
theoretical approach to the particle motion and the outcome of a real experiment.

The route to a general description of the microscopic particle motion was firstly outlined
by the famous work of Leon van Hove [42] in defining the fundamental function G(�r, t), the
space–time correlation function as the Fourier transform of the scattering law S( �Q, ω). It is
a measure of the correlation between the microscopic local density at time t and coordinate r
with the local density at another time and another point in space. This function reads

G(�r , t) = 1

N

〈
ni(�r = 0, t = 0) · n j(�r , t)

〉
, (3.4)

where n(�r , t) stands for the local particle density and is given by the useful definition

n j (�r , t) =
N∑

j=1

δ(�r − �r j (t)). (3.5)

The function defined in equation (3.4) is called the van Hove space–time correlation function
and is related to the scattering law by a double Fourier transform in space and time:

S( �Q, ω) = 1

2π

∫ +∞

−∞

∫ +∞

−∞
ei( �Q·�r−ωt)G(�r, t) d�r dt . (3.6)

Accordingly, a function Gself(�r , t) is defined as the Fourier transform of the incoherent
scattering law:

Sincoh( �Q, ω) = 1

2π

∫ +∞

−∞

∫ +∞

−∞
ei( �Q·�r−ωt)Gself(�r , t) d�r dt . (3.7)

Consequently, this function gives the probability of finding a tagged particle at time t and
position r ; if at t = 0 it has been at r = 0, it reads

Gself(�r , t) = 1

N
〈ni(�r = 0, t = 0) · ni(�r , t)〉 , (3.8)

with ni(�r , t) being the single particle local density

ni(�r , t) = δ(�r − �ri(t)). (3.9)
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From equations (3.1) to (3.9), a number of relations can be derived which play an important
role in the interpretation of inelastic scattering data, but not all of them are really attainable
from experiment.

Spatial Fourier transformation of equation (3.4) gives the so called coherent intermediate
scattering function F(Q, t):

F( �Q, t) = 1

N

〈
n∗

Q(0) · nQ(t)
〉
. (3.10)

Now, the ni(�r , t) have turned into the Fourier components nQ(t) of the local densities (the
subscripts i and j are from now on omitted for clarity). They are often interpreted as plane
waves and may be interpreted as density fluctuations with wavevector Q:

nQ(t) =
N∑

j=1

exp
{

i �Q · �r j (t)
}

. (3.11)

The intermediate scattering function is perhaps the most central quantity in the theoretical
framework of liquid dynamics. It is therefore sensible to consider this quantity in some more
detail: evidently, from its definition, F( �Q, t) is related to the scattering law by a Fourier
transform in time,

F( �Q, t) = 1√
2π

∫ +∞

−∞
eiωt S( �Q, ω) dω. (3.12)

At short times we may formally approximate the shape of F( �Q, t) from a Taylor expansion,

F( �Q, t) = F( �Q, 0) +
∣∣∣Ḟ( �Q, t)

∣∣∣
t=0

· t +
∣∣∣F̈( �Q, t)

∣∣∣
t=0

· t2

2
+ · · · , (3.13)

where the coefficients are given through the time derivatives of (3.12):

F( �Q, 0) = 1√
2π

∫ +∞

−∞
S( �Q, ω) dω ≡ 〈

ω0
〉 = S( �Q)

∣∣∣Ḟ( �Q, t)
∣∣∣
t=0

= i
1√
2π

∫ +∞

−∞
ωS( �Q, ω)dω ≡ 〈

ω1
〉 = 0

∣∣∣F̈( �Q, t)
∣∣∣
t=0

= − 1√
2π

∫ +∞

−∞
ω2S( �Q, ω) dω ≡ 〈

ω2
〉

∣∣∣ ···F( �Q, t)
∣∣∣
t=0

= · · · .

(3.14)

From (3.14) we recognize that the expansion coefficients in equation (3.13) are identical to the
nth order frequency moments 〈ωn〉 of the scattering law. Since in the classical limit S(Q, ω)

is a symmetric function centred at ω = 0, all the odd moments are equal to zero. However,
the measured S( �Q, ω), even in the classical limit, is usually not symmetric because at not too
high temperature the excitation process in the liquid, observed on the energy loss side of the
neutron spectrum, is more likely to occur than the de-excitation process on the energy gain side.
This fact has to be taken into account and usually the measured scattering law is symmetrized
by introducing a corresponding Boltzmann factor [34]. The remaining moments, however, can
be related to microscopic properties of the liquid: e.g., the zero order moment gives the static
structure factor S(Q). Further expressions exist up the sixth order [39]. It turns out that it is
practical to formulate the moments in a reduced form, since then they represent characteristic
frequencies of the liquid as we shall see later. E.g., the reduced second moment is defined as

ω2
0(

�Q) =
〈
ω2

〉
〈
ω0

〉 = kBT

M

Q2

S(Q)
, (3.15)
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where kB is the Boltzmann constant and M is the particle mass. The fourth reduced moment,
however, is more knotty since its calculation requires a detailed knowledge of the interatomic
interaction potential V (r) and the pair correlation function g(r):

ω2
L( �Q) =

〈
ω4

〉
〈
ω2

〉 = 3 kBT

M
Q2 + 	2

0 − 	2
Q, (3.16)

with

	2
0 = 4

3

nπ

M

∫ ∞

0
g(r)

[
d2

dr 2
V (r) + 2

r

d

dr
V (r)

]
r 2 dr and

	2
Q = n

M

∫ ∞

0
g(r)

d2

dr 2
V (r) cos( �Q · �z)r 2 dr ,

(3.17)

where n denotes the number density and the coordinate �z is chosen to be parallel to the direction
of �Q. However, equation (3.16) can be considerably simplified for isotropic simple liquids with
spatial short range interactions, and as a good approximation for the reduced fourth moment
one finds [43]

ω2
L( �Q) = 3kBT

M
Q2 + ω2

E

[
1 − 3 sin( �Q · �r0)

�Q · �r0

− 6 cos( �Q · �r0)

( �Q · �r0)2
+ 6 sin( �Q · �r0)

( �Q · �r0)3

]
. (3.18)

Here, ωE is a characteristic frequency called the Einstein frequency and usually interpreted as
the average rattling rate of the atoms in their cage of next neighbours. It is given by

ω2
E = 4

3

nπ

M

∫ ∞

0
g(r)

d2

dr 2
V (r)r 2 dr . (3.19)

The applicability of the approximation in equation (3.18) was demonstrated by comparing it
with reduced fourth frequency moments obtained from computer simulations on Lennard-Jones
liquids [44] and on liquid rubidium [45] employing the potentials given in equations (1.1)
and (1.2).

The intermediate scattering function can in principle also be obtained from experiment;
however, this is a difficult task. Sufficiently high energy resolution is required which on
the other hand—depending on momentum transfer—may lead to restrictions in the kinematic
plane which also hampers a numerical transformation of the data. Also, in order to obtain a
reliable result data with high statistical quality are needed where any scattering background has
carefully been removed. Most of the attempts to transform neutron spectra were performed
on incoherent scatterers to obtain the incoherent intermediate scattering function, since the
incoherent scattering law has a considerably simpler shape. A direct access to F( �Q, t) is
however possible in neutron spin echo experiments [46], where, however, the accessible Q–ω-
range is very much limited. However, a quantity closely related to the density correlation is the
correlation function of the particle currents. From equation (3.11) we can define the Fourier
components of the local particle current �j(�r , t) as

jQ(t) =
N∑

j=1

υ j (t) exp
{

i �Q · �r j (t)
}

= 1

iQ
ṅQ(t), (3.20)

where υ j is the velocity of particle j at time t . Actually, equation (3.20) must be split into two
transverse and one longitudinal components. Only the longitudinal modes are correlated to the
density fluctuations in the system. Since neutrons and x-rays are coupling to the spatiotemporal
fluctuations of the density it is the longitudinal collective dynamics which leaves its fingerprint
on the scattering law. Therefore, we will deal only with the longitudinal part and hence we
have chosen �z to be identical to the direction of �Q. Naturally, in a dense fluid with highly



R598 Topical Review

correlated local densities the particle flow is expected to be highly correlated as well and we
can accordingly define a current–current correlation function JL( �Q, t):

JL( �Q, t) = 1

N

〈
j z
Q(0) · j z

Q(t)
〉

(3.21)

(for simplicity the suffix ‘z’ for the component of the current will from now on be neglected).
The Fourier transform of equation (3.21) gives JL( �Q, ω) and it is easily shown that the relation

JL( �Q, ω) = ω2

Q2
S( �Q, ω), (3.22)

is valid [35, 36], which allows the direct determination of the current–current correlation func-
tion from the measured scattering law. However, although equation (3.22) defines a new corre-
lation function it should be noted that it introduces no further new physics. The advantage of
JL( �Q, ω) over the original scattering law is purely experimental as we shall see later.

So far we have performed a purely phenomenological approach to liquid dynamics and
as a result we have defined some important correlation functions and the frequency moments
of the scattering law. However, from equations (3.1) to (3.22) we do not gain any insight
into the microscopic space–time behaviour of the liquid particles. For an understanding of the
particle motion on microscopic time- and length-scales we need to invoke microscopic theories
which allow the scattering law S( �Q, ω) to be modelled for a comparison with experimental
results. Some of these models will be presented in the next chapters where their applicability
to measured data is also examined. Since we are only dealing with isotropic fluids here, the
direction of the measured momentum transfer is of no importance. Hence, in order to keep the
formulae clearer we will omit the vector arrow from now on for Q-dependent functions.

4. Collective dynamics

4.1. The hydrodynamic limit

At high density, close to melting, the microscopic dynamics in a liquid comprises a distinct
collective character. Fluctuating density–density correlations give rise to transverse and
longitudinal phonon-like modes similarly as in a crystalline solid. However, while in the
latter case they result from coupled harmonic vibrations of the atoms in an ordered lattice,
in liquids they are the consequence of fundamental thermodynamic fluctuations and are better
characterized as propagating sound modes. In crystals and in liquids these excitations can be
measured using inelastic scattering techniques, where they appear as sidepeaks in the scattering
law. This allows investigation of the interesting question of down to what length scales a
liquid is capable of sustaining sound modes and how their characteristic properties vary with
decreasing wavelength.

In the long wavelength limit (at very low Q), where S(Q, ω) can be accessed by
inelastic light scattering techniques, the measured scattering spectrum from a simple liquid can
excellently be described by a sum of three Lorentzians, the so called Rayleigh–Brillouin triplet.
The underlying physical picture was already unravelled about 40 years ago by Mountain [47]
and by Kardanov and Martin [48] in the framework of classical hydrodynamics. Starting from
the conservation laws for mass, momentum and energy it was shown that in the case of a simple
liquid the experimentally observed pattern can be approximated by three Lorentzian peaks, one
located at the centre of the spectrum and the other two at positive and negative energy transfer,
respectively:

S(Q, ω) = S(Q)

2π

[
γ − 1

γ

2DT Q2

ω2 + (DT Q2)2
+ 1

γ

�Q2

(ω ± Q cS)2 + (�Q2)

]
. (4.1)
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From the thermodynamic viewpoint, the sidepeaks—or Brillouin lines—originate from
pressure fluctuations at constant entropy which are created or annihilated in the scattering
process. They shift to higher frequency with rising momentum transfer, indicating the
propagating nature of these excitations. The shift is determined by the adiabatic speed of
sound cS in the liquid. These are the longitudinal sound modes which travel through the liquid
with adiabatic sound velocity. The width of the lines is a measure of the mode lifetime and
determined by the sound absorption coefficient �, which is related to the thermal diffusivity
DT and the longitudinal viscosity νL:

� = 1
2 [(γ − 1)DT + VL]. (4.2)

The central line, the so called Rayleigh peak, results from light scattered by local non-
propagating density fluctuations. Their lifetime is determined by the thermal diffusivity DT

and theoretically these modes can be understood as entropy fluctuations at constant pressure.
All peaks broaden quadratically with increasing Q.

Both types of fluctuations are correlated, which can already be inferred from the
observation that the weight of all three lines is determined by the same quantity γ , the ratio of
the heat capacities CP and CV . This is quantified in the well known Landau–Placzek ratio [49],
which links γ directly to the ratio of the integrated intensities I of the Rayleigh and Brillouin
peaks:

γ − 1 = IR

2IB
. (4.3)

According to (4.1) the ratio of the heat capacities plays a crucial role in determining the relative
weight of the Brillouin contribution to the spectrum. The more CP and CV resemble each
other (i.e. γ ≈ 1) the stronger is the weight of the collective excitations. For the liquid alkali
metals close to melting one finds γ ≈ 1 and indeed the spectra show a pronounced collective
character. From (4.1) to (4.3) a clear picture evolves about the microscopic processes that
lead to the characteristic three line pattern observed in this long wavelength limit: a scattered
photon creates (or annihilates) a longitudinal vibrational mode, which gives rise to the Stokes
or anti-Stokes Brillouin lines. The lifetime of this propagating mode is ruled by two possible
relaxation channels, the loss of heat determined by the value of the thermal diffusivity DT

and the loss of energy due to viscous relaxation given by the longitudinal viscosity νL. These
quantities hence determine the width of the resulting excitation peak (equation (4.2)). While the
mode travels through the liquid it leaves behind a trace of adiabatically squeezed and dilated
volume elements with diameters of the order of half the mode period 2π/Q, i.e. a trace of
temperature and density fluctuations which spatially oscillate about their corresponding average
values. These fluctuations decay back to equilibrium on a timescale solely determined by the
thermal diffusivity. Scattering from these fluctuations gives rise to the quasielastic scattering
contribution, i.e. the Rayleigh peak with width DT Q2.

With decreasing wavelength (i.e. increasing wavevector) the linewidths of all the peaks
broaden quadratically, indicating that the lifetime of the underlying excitations rapidly
decreases the smaller the length scale which is probed by the scattered photons becomes. Since
the excitation frequency of the mode rises only linearly, an interesting situation may occur if at
sufficiently large Q the width of the central Rayleigh peak has adequately broadened and the
condition DT Q2 = cS Q is fulfilled. In this case the rate at which heat is piled up due to the
adiabatic compression from the mode equals the rate at which heat is dissipated due to thermal
conduction. The process is hence no longer adiabatic and modes with larger wavenumbers
must propagate with isothermal rather than with adiabatic speed of sound, i.e. with cT rather
than with cS. Using literature data for cS [50] and for the computation of DT [51], one finds that
for the alkali metals close to melting this adiabatic to isothermal transition already sets in at
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wavevectors as small as about 10−6 Å
−1

, which means that a large portion of the waves from the
ultrasonic sound spectrum traverses the liquid metal already with the isothermal speed of sound.
This is at least the situation if the bulk value for DT is used, containing the electronic as well as
the ionic contribution to heat conductivity. However, it is still an ongoing discussion whether
only the ionic part should contribute (see e.g. [52]). In this case the adiabatic to isothermal
transition should occur at considerably larger Q-values. However, since in the molten alkalis
γ ≈ 1, the difference between cT and cS is negligible and the problem is of rather academic
interest. However, for other liquids with γ > 1 this might be an interesting and measurable
effect.

4.2. Beyond the hydrodynamic limit

Hydrodynamics is applicable as long as the wavelength of the characteristic fluctuations in the
sample is considerably larger than the microscopic diameters. In an atomic fluid such as a
compressed noble gas or a liquid metal these diameters may be of the order of interatomic
distances. The validity of the hydrodynamic range is therefore often characterized by the
condition σ · k  1, where σ is an atomic diameter related to the position of the structure
factor maximum, which is located at about Q0 = 2π/σ , and �k is the wavevector of the
fluctuation, which in a scattering experiment must match the momentum transfer �Q of the
probe in order to be identified. The ideal tools to investigate the hydrodynamic regime and
to verify the predictions from classical hydrodynamics are therefore inelastic light scattering
techniques [53], where the condition σ · Q  1 is certainly valid. Classical hydrodynamics
predicts that the excitation energy of the collective modes increases linearly in Q and all three
lines of the spectrum broaden with Q2. At sufficiently high momentum transfer the lines
are hence expected to have merged into one broad intensity distribution where the collective
modes are no longer discernable. However, following the above given characterization, the
hydrodynamic relations should no longer apply if the condition σ · Q ≈ 1 is approached,
i.e. if fluctuations on the atomic scale are regarded and if the momentum transfer of the
probe is in the range where neutron and x-ray scattering techniques are applicable. Then,
molecular dynamics effects certainly need to be taken into account, and it is expected that the
hydrodynamic behaviour transforms into the molecular dynamics regime. In fact, it is found
that distinct sound modes are still observed at Q values characteristic of atomic length scales.
This was first demonstrated by the pioneering work of Copley and Rowe on liquid rubidium
in the mid-1970s [29]. Some important neutron investigations followed; however, due to the
difficulties mentioned above the breakthrough for the investigation of the small wavelength
collective dynamics in liquids came with the progress of IXS over the last 10 years.

For liquid sodium close to its solidification temperature (Tm = 371 K) such spectra are
exemplarily shown in figure 5. The data were obtained at the inelastic beamline ID16 of the
ESRF in Grenoble [28]. Sound modes can clearly be identified in the scattering law up to about
0.75 Q0 (not shown in the figure), where Q0 = 2.01 Å

−1
is the position of the main maximum

in S(Q). The Q-range is clearly beyond the hydrodynamic limit, which is characterized by
σ · Q ≈ 1 and which can be estimated by employing the hard sphere diameter of liquid
sodium [67] (σH(Na) = 3.34 Å). Following the definition, Q-values above 0.3 Å

−1
lie clearly

in the molecular dynamics domain.
The excitation frequencies of the modes are easily obtained from fitting a damped

harmonic oscillator model (DHO) [54] to the data convoluted with the experimental resolution,
where the quasielastic contribution is simulated by an additional Lorentzian (for the sake of
clarity the DHO spectra are not displayed in figure 5). A characteristic Q–ω-relation is found
which considerably differs from the hydrodynamic predictions, as is shown in figure 6. The
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Figure 5. Selected S(Q, ω)-spectra of liquid sodium at 380 K obtained from IXS. Open circles
are experimental data, the full line corresponds to the viscoelastic model (equation (4.7)) in the
Lovesey approximation, the dashed line the viscoelastic model with τL, ω0(Q) and ωL(Q) used as
free fitting parameters.

excitation frequencies of the modes no longer increase simply linearly with Q as predicted by
equation (4.1); instead, a similarity to the well known phonon dispersions of the corresponding
crystalline solids is found: at lower Q the mode frequency increases about linearly, but with
increasing momentum transfer the slope begins to decrease and finally vanishes at ≈Q0/2. In
the crystal this would correspond to the first Brillouin zone boundary, where, as a consequence
of the interaction between the phonons and the translational invariance of the lattice, the
phonons form standing, non-propagating waves. The full circles in figure 6 are results from
an MD simulation [55] where an effective pair potential was used derived in a similar way as
the potential given in equation (1.2), where, however, another empty core potential [56] was
used and a different local field for the dielectric function [57]. The simulation result is in perfect
agreement with the experimental data, indicating that this potential is well suited to describe
the particle dynamics in this liquid alkali metal.
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Figure 6. Q–ω-relation of the longitudinal collective excitations in molten sodium (380 K). Open
circles are obtained from fitting the DHO model to the IXS data; closed circles are results of an
MD simulation [55]; the slope of the dashed line is given by cT. The full lines denote ω0(Q)

and ωL(Q) as calculated employing equations (3.15) and (3.16) with an appropriate effective
potential [55] and experimental data [60], respectively.

For a molecular dynamics description of the scattering law beyond σ Q ≈ 1 the
hydrodynamic description needs to be modified. This is done in an approach which is called the
generalized hydrodynamics. Speaking in terms of reciprocal space, the applicability of classical
hydrodynamics is extended to values of the momentum transfer typical for inelastic x-ray or
neutron scattering experiments.

Starting from the longitudinal part of the linearized Navier–Stokes equations one can
derive a simple form of an equation of motion for the current density which defines the time
dependence of the particle flow in the Q → 0 limit [36]. This expression is then further refined
for use beyond the hydrodynamic limit by introducing the relevant quantities in this relation as
nonlocal Q-dependent functions. In particular, the longitudinal viscosity is generalized in the
form of a memory function, which allows the expression of the complete equation of motion for
the current density in a specific standard form for correlation functions, a so called generalized
Langevin equation [58]:

∂

∂ t
JL(Q, t) = −

∫ t

0
KL(Q, t − t ′) · JL(Q, t ′) dt ′

KL(Q, t) = ω2
0(Q) + Q2 M(Q, t).

(4.4)

M(Q, t) is the memory function for the density–density correlation which contains the exact
details of the relaxation processes in the liquid. Equation (4.4) is ‘exact’ as long as we have
not introduced a specific approximation for the memory function M(Q, t). This is also the
drawback of this approach because M(Q, t) contains in some way the generalized thermal
diffusivity DT(Q) and the generalized viscosity �L(Q, t) for which we do not have a recipe for
a straightforward determination. Hence, this function introduces some uncertainty and M(Q, t)
may therefore be viewed as a ‘free’ function, whose choice finally determines the consistency
with experiment. The Laplace–Fourier transform of (4.4) returns JL(Q, z = iω) with real part
JL(Q, ω), which determines the frequency spectrum of JL(Q, t). For the scattering law one
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then obtains

S(Q, ω) = Q2

ω2
JL(Q, ω)

= S(Q)

π

Q2 ω2
0(Q)M ′(Q, ω)[

ω2 − ω2
0(Q) + ω Q2 M ′′(Q, ω)

]2 + [
ωQ2 M ′(Q, ω)

]2
. (4.5)

M ′(Q, ω) and M ′′(Q, ω) are respectively the real and imaginary part from the Fourier
transforms of M(Q, t) and responsible for damping and dispersion of the collective modes.

The simplest approach to a suitable scattering law is to assume that M(Q, t) can directly
be identified with the viscosity function �L(Q, t), neglecting thermal diffusion and implying
that viscous dissipation is the only relaxation channel in the liquid. Furthermore, one may
presume that the decay occurs simply exponentially with characteristic decay time τL(Q):

M(Q, t) ≡ �L(Q, t) = �L(Q, 0)e−t/τL (Q). (4.6)

The use of (4.6) was in fact motivated by a similar approach to describe transverse modes
in Lennard-Jones systems [44]. The initial value of the generalized longitudinal viscosity
�L(Q, 0) can be determined from a comparison with sum rules [36], allowing the ready
computation of the real and imaginary parts of M(Q, t), and after some algebra one obtains

S(Q, ω)

S(Q)
= 1

π

τL(Q)ω2
0(Q)

[
ω2

L(Q) − ω2
0(Q)

]
[
ωτL(Q)

(
ω2 − ω2

L(Q)
)]2 + [

ω2 − ω2
0(Q)

]2
. (4.7)

Due to the physical prerequisites put into the model, (4.7) is called the viscoelastic
approximation. In this simple approach the scattering law is fully determined by the
information put into the frequency moments and by τL(Q) as an adjustable parameter. In
his derivation of (4.7) [59] Lovesey has suggested that the latter can directly be related to
ω0(Q) and ωL(Q), leaving (4.7) without any free parameter, and the scattering law can
straightforwardly be calculated from the frequency moments, i.e. from a knowledge of the
static liquid structure and the underlying pair potential. The results of such a calculation are
shown in figure 5 as the full lines. Waseda’s S(Q)-data [60] and the pair potential used to
compute the dispersion relation in figure 6 [55] were employed as an input. Although the three
line structure of the experimental result is nicely reproduced, the agreement with the measured
data remains poor. However, the situation can considerably be improved if (4.7) is used as a
fitting function with τL(Q), ω0(Q) and ωL(Q) as free parameters. Results from this procedure
are also shown in figure 5 as the dashed lines. The agreement with experiment improves
considerably. However, employing such a data analysis one carefully needs to confirm that
the parameters remain physically. Their Q-dependence, as obtained from the fitting, is shown
in figure 7 together with the direct calculation of the corresponding functions. Although the
spectra obtained from the Lovesey model and from the fitting procedure differ considerably, the
differences between the parameters remain small, indicating on one hand the sensibility of (4.7)
and the fact that the Lovesey model is not unreasonable and viscous relaxation may in fact play
the dominant role. Nevertheless, this single exponential model has several drawbacks: the
agreement with experiment is not perfect. A closer inspection of figure 5 reveals that especially
the central line is not fully reproduced although the deviations fade with increasing Q towards
the structure factor maximum, i.e. with diminishing influence from the collective excitations.
More confusing, however, is the fact, that—in contrast to the hydrodynamic view—a clear
picture for the microscopic processes in the liquid does not evolve from this kind of memory
function approach. No direct relation is obtained between e.g. the lifetime of a mode and
the decay time τL(Q) of the density–density correlation. This lack of information hampers a
detailed understanding of the microscopic processes causing the observed three line structure.
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Figure 7. (a) Comparison of ω0(Q) and ωL(Q) as computed using S(Q) [60] and an appropriate
pair potential [55] in (3.15) and (3.16) (solid lines) with results from fitting (4.7) to the experimental
data (circles and triangles). (b) Comparison between τL(Q) as obtained from the Lovesey model
(�) and from fitting (4.7) to the data (�).

Apparently, a clear assignment of distinct relaxation mechanisms to distinct excitations is not
as simple on the microscopic scale. It must also be emphasized that dissipation due to thermal
conduction is not taken into account. The memory function formalism can also be used to
derive the hydrodynamic scattering law [36]. In that case, the thermal diffusivity appears in an
additional exponential to the viscous term in the memory function. Extending this expression
to a generalized hydrodynamic description gives [36]

M(Q, t) = ω2
0(Q) + Q2�L(Q, t) + ω2

0(Q)(γ − 1)e−DT Q2t . (4.8)

However, for the alkali metals a big improvement is not to be expected. Due to the higher
Q considered here and the large thermal conductivities of the alkali metals the exponential
has already declined to negligible values. Additionally, in this extension of the hydrodynamic
view the thermal diffusivity is still weighted by γ − 1, which for the alkalis is very small and
furthermore reduces the weight of this term.

Although the observed three line structure can apparently be described with a single
relaxation process, it was shown in the past that it is more sensible to assume the existence
of a second viscosity related mechanism. This was observed for the first time by Alder and
Wainwright [61] in a computer simulation on hard spheres, where two processes could be
distinguished in the stress–stress correlation function: a rapid initial decay due to random
binary collisions and an additional long time decay due to viscoelastic effects. The neglect
of the second contribution led to a severe underestimate of the shear viscosity. A similar
observation was made in another MD work by Levesque et al [44] in the attempt to correctly
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describe the decay of the memory function for the transverse current correlation. It appears
hence obvious to try a similar strategy here and M(Q, t) may then take the form [36]

M(Q, t) = ω2
0(Q) + [

ω2
L(Q) − γ (Q)ω2

0(Q)
] {

(1 − α(Q)) e−t/τα (Q) + α(Q)e−t/τμ (Q)
}

+ ω2
0(Q) (γ (Q) − 1) e−DT(Q)Q2t . (4.9)

Here, α(Q) denotes the relative weight of the respective viscous contributions. Additionally,
the thermal diffusivity and the ratio of the heat capacities have been generalized by allowing
for a corresponding Q-dependence. Using τα(Q), τμ(Q), α(Q), DT(Q) and γ (Q) as fitting
parameters it was shown that the two relaxation time model fits very well to molecular dynamics
data of Lennard-Jones systems [44].

Excellent agreement to experiment could also recently be obtained by employing this idea
in a fitting procedure, with DT and γ left as constants, to reproduce very precise S(Q, ω)-
measurements on dense liquid lithium [62] and sodium [63]. For molten sodium some results
of this analysis are shown in figure 8 as the thicker lines. The data are now in perfect agreement
with experiment. The thin line in the figure corresponds to a fitting process with only one
exponential, i.e. to the conventional viscoelastic model. A distinct difference is found between
the two methods, indicating that the use of a second viscous relaxation mechanism seems to
be appropriate. The Q-dependence of the two relaxation constants is depicted in figure 9. In
accord with the observation by Alder and Wainwright [61], two processes on distinctly different
timescales can indeed be identified: one relaxation time denoted τμ corresponds to a fast decay
of the density correlation while another process, denoted by τα , occurs on a timescale about one
order of magnitude slower. This implies that the fast decay is the main contribution determining
the shape of the memory function. The notations μ and α for the relaxation channels were
chosen to point to a similarity in the analysis of light scattering spectra from glass formers
where the use of a two exponential viscous model is customary (see e.g. [64]). In fact, there
exist current attempts to relate the two time constants directly to those of an undercooled glass
forming liquid [65], implying a continuous transition from the liquid to the disordered solid
phase.

Interestingly, the fast process has the same timescale as τL(Q) obtained from the
viscoelastic model. Moreover, it is found that the weight of this process dominates considerably,
indicating that it mainly determines the main features in S(Q, ω).

Valuable information on the microscopic dynamics in a liquid can also be gained directly
from the shape of the dispersion relation: in the low Q limit the excitations propagate either
with adiabatic or with isothermal speed of sound. However, figure 6 indicates that the slope of
the dispersion relation in the lower Q range is considerably larger (the dashed line gives the
expected behaviour due to cT).

The small wavelength modes apparently travel faster than their hydrodynamic
counterparts. This effect is also a clear deviation from the hydrodynamic prediction which
sets in close to the aforementioned limit estimated to lie at about 0.3 Å

−1
. It is interesting to

note that the mode indicated by the symbol at Q = 0.19 Å
−1

in figure 6, a Q-value which
was formally estimated to still lie within the hydrodynamic regime, in fact propagates with
adiabatic or isothermal speed of sound. The question of the transition from hydrodynamics
to molecular dynamics has already been addressed some years ago in a neutron Brillouin
experiment on compressed fluid argon, where the bending up of the dispersion curve could
directly be measured [66].

The effect can also be understood within the context of generalized hydrodynamics.
Discussing the denominator in equation (4.5) [36] it is shown that—depending on frequency—
two limits exist for the dispersion relation and hence for the phase velocity of the modes:
at low frequency, i.e. when the condition ωτ  1 is valid, the Q–ω-relation is given by
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Figure 8. Some selected spectra of an IXS investigation on molten sodium [63]. The thin lines
represent the results from fitting (4.7) to the data with τL(Q) as a free parameter. The thick lines
are results from a fitting procedure where a two exponential model similar to equation (4.9) was
employed for M(Q, t).

γω0(Q), i.e. basically by the normalized second moment. In this case the modes oscillate
much slower than the characteristic decay of the density–density correlation imposed onto a
volume element in the liquid by a compression–dilation cycle of the traversing excitation. One
may then define a low frequency sound speed c0(Q) = γω0(Q)/Q, which in the Q → 0
limit reduces to the adiabatic speed of sound cS, i.e. to the correct hydrodynamic prediction. If,
however, the frequency is sufficiently high, i.e. if ωτ � 1, the density correlation imposed by
an oscillating mode has no time to decay. Then elastic shear and compression moduli originate,
determining the dynamical behaviour of a microscopic volume element. This causes a shift
to higher frequency leading to the observed rise in phase velocity. The dispersion relation is
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Figure 9. Q-dependence of the relaxation times τμ and τα for liquid sodium close to melting,
obtained from fitting the two relaxation time model (equation (4.9)) to experimental IXS data [63].

then given by ωL(Q) [36], which is in fact observed in the experiment (see figure 6). In this
limit one may again define a propagation speed c∞(Q) = ωL(Q)/Q. The Q-dependence
of the phase velocities is depicted in figure 10(a). Open circles correspond to measured data
cm(Q) = ωm(Q)/Q while the solid lines give c0(Q) and c∞(Q) computed from ω0(Q) and
ωL(Q) of figure 6, respectively.

Two things seem mainly to be responsible for the deviation of the Q–ω-relation from the
hydrodynamic prediction with increasing Q and hence for the departure of the mode velocity
cm(Q) from the bulk value: firstly, the increasing interaction of the mode with the microscopic
structure leading to a bending down of the Q–ω-relation and the formation of the quasi-
Brillouin-zone boundary at ≈Q0/2. To a first approximation, this behaviour is reproduced
by the second normalized frequency moment containing the structural information via S(Q).
Additionally, a second rather dynamical contribution becomes important with rising frequency.
It is related to the onset of quasi-elastic restoring forces and hence reflects the short range
interactions in the liquid. As a result, a bending up of the dispersion relation towards ωL(Q)

is found, causing an increase of the phase velocity. It is challenging to ask for a microscopic
understanding of the latter effect. As a first attempt one may try to simply subtract the structural
contribution represented by c0(Q) (or ω0(Q)) from the experimental phase velocity. For
sodium the result is shown in figure 10(b).

A sharply peaking function is obtained with a pronounced maximum at Q∗ ≈ 0.63 Å
−1

.
At this Q-value the dynamic influence on the dispersion relation seems to have its largest
contribution. Estimating the corresponding r -space value as r∗ = 2π/Q gives 9.9 Å, which
exactly matches three hard sphere diameters (σH(Na) = 3.36 Å [67]). Apparently, the observed
onset of quasielastic solid-like forces at sufficiently high frequency, i.e. at sufficiently small
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Figure 10. (a) Measured phase velocity cm(Q) of the collective modes in liquid Na at 388 K
(open circles), Q-dependent adiabatic sound velocity c0(Q) and high frequency limit c∞(Q) (solid
lines). (b) Difference between phase velocity cm(Q) of the collective modes and the adiabatic sound
velocity cS(Q). Dashed line: computer spline.

wavelength, can structurally be related to inhomogeneities with diameter ≈10 Å. Interestingly,
r∗/2 coincides exactly with the first minimum in the pair correlation function g(r) [60], as
is illustrated in figure 11. Moreover, integrating the radial distribution function 4πr 2g(r) up
to this value yields that the corresponding volume contains 12.5 atoms. Hence, we identify
the underlying structural inhomogeneities as the shell of next neighbours around a central ion,
the most stable structural arrangement in the otherwise disordered melt. In order to confirm
that these findings from molten Na are not accidental, we have undertaken the same analysis
using older S(Q, ω)-data on molten caesium [68]. Here, a value of r∗ = 14.5 Å is found,
which is again three times the hard sphere diameter of the ion (σH(Cs) = 4.76 Å [67]).
Also, r∗/2 and the first minimum in g(r) coincide, and an appropriate integration yields 13
ions in this case. The characteristic number of particles found from integrating the radial
distribution function tempts further speculation that the underlying structural arrangements
are of icosahedral order, for which 12 ions would reside around a central particle. Similar
conclusions were drawn for liquid rubidium from a discussion of the bond angle distribution
obtained from an MD simulation [69]. In fact, it has been known for a long time that
the formation of icosahedral aggregates is associated with a distinct decrease in interaction
energy [70].

4.3. Temperature dependence of the collective dynamics

The dense liquid alkali metals show a distinct solid-like character: the particle dynamics is
subject to collective phononic excitations extending down to microscopic wavelengths with
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Figure 11. Pair correlation function g(r) for liquid Na [60]. The first minimum matches with the
radius r∗/2 of the concluded shell of next neighbours.

a solid-like dispersion relation. At high mode frequencies the liquid develops internal shear
and compression moduli similarly as in a solid, causing an increase of the propagation speed
towards the value of the crystal where the sound velocity is larger than in the liquid. These
observations were often regarded as reminiscent of the nearby solid state. Thus, the solid-
like properties were supposed to be present only in the vicinity of melting [36, 71]. We
examined this assumption in extending our experiments to higher temperatures [28]. The
temperature variation of the scattering law is exemplarily shown in figure 12 for a spectrum
at Q = 1 Å

−1
.

Similarly as in figure 5, the solid lines are fits employing equation (4.7) with ω0(Q), ωL(Q)

and τL(Q) as free parameters, while the dashed lines correspond to the direct calculation
of the viscoelastic model employing structural data [60] and the pseudopotential mentioned
above [55]. The variation of the dispersion relations with rising temperature is shown in
figure 13. No characteristic changes in the collective dynamics are found. The viscoelastic
model can still be fitted to the spectra (figures 12(a)–(d)). τL(Q) is found to slightly decrease,
leading to an overall broadening of the spectra with rising T . The dispersion relations also
do not vary much compared to melting (see figures 13(a)–(d)). A positive dispersion is found
at all temperatures, indicating that elastic solid-like restoring forces control the microscopic
dynamics even at conditions which are far away from the solid phase.

It must however be emphasized that the temperature and density range explored in the
experiments on molten sodium were not extended to conditions where the view of a delocalized
electron gas may no longer be appropriate, i.e. down to liquid densities below 3ρcrit. The
interparticle forces within the liquid are hence still controlled by the delocalized electrons. It
is therefore sensible to relate the observed solid-like behaviour rather to the specific metallic
binding in the liquid than to the thermophysical vicinity of the solid crystalline phase.
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Figure 12. S(Q, ω) of molten Na for different temperatures. Open circles correspond to
experimental data [28], the solid line is a fit of the viscoelastic model (equation (4.7)), and the
dashed lines represent direct calculations using a characteristic pair potential [55] and structural
data [60] as inputs (no such data exist for the higher temperatures). The dotted line shows the
experimental resolution function.

4.4. The expanded liquid metal

So far we have assumed that the fluid alkali metals were monatomic and the forces between
the particles were unambiguously determined by a dense gas of delocalized electrons. The
interparticle potential can then adequately be described within the framework of pseudo-
potential theory. However, as already mentioned in the introduction, this is no longer the case if
the density of the liquid is sufficiently reduced. Then, the screening of the ions breaks down and
the electrons start to localize. Measurements on the density dependence of the electronic and
magnetic properties of the molten alkalis indicate that this scenario sets in below 3ρcrit. This
is exemplarily illustrated in figure 14, for the dc electrical conductivity of fluid caesium. Full
circles correspond to measurements which were carried out for a number of states along the
liquid–vapour coexistence curve [72]; open circles represent calculations within the framework
of the nearly free electron (NFE) model, where the conductivity is related to the structure of the
liquid, i.e. to the static structure factor S(Q), by the well known Faber–Ziman formula [73].
The model hence represents the pure influence of density without any further electronic effect.
For the computations [74], experimental S(Q)-data [75] were used as an input. At high density,
calculations and measurements are in perfect agreement. However, since the model ignores
localization the two datasets diverge when this effect becomes dominant below 3ρcrit. A similar
scenario is depicted in figure 15, which shows the density dependence of the magnetic mass
susceptibility χg for the same metal [76]. A steep rise of χg is observed with decreasing ρ when
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Figure 13. Dispersion relations of the collective excitations in molten Na for the temperatures given
in figure 12 obtained from fitting the DHO model to the data. Dotted lines represent dispersion
due to the isothermal speed of sound, dashed lines show ω0(Q) and full lines give the ωL(Q)

curves, which were calculated using an adequate pair potential [55] and structural data [60] (see
also figure 6).

values below three times the critical density are approached, indicating the increasing number
of unpaired spins which have localized at their parent ions.

Above, it was already assumed that the continuous breakdown of the screening and the
associated localization of the conduction electrons must also have a strong impact on the
interparticle forces. As a consequence, considerable changes in the structural and in the
dynamical features of the fluids should be expected. This interesting question was addressed in
a variety of S(Q)- and S(Q, ω)-investigations on fluid caesium [75] and rubidium [77, 78, 16],
spanning nearly the whole liquid range between melting and the liquid–vapour critical point.
Rubidium and caesium were chosen because of their lower critical temperatures and pressures
as compared to the less heavy alkalis, a prerequisite to make such experiments feasible. It is
found that the principal features of S(Q, ω) are similar to those already reported above for
liquid sodium. Again, distinct collective excitations are observed in the coherent INS spectra
extending up to momentum transfers beyond Q0/2 [29, 68], which exhibit all of the above
mentioned properties [71, 79]. Moreover, it was shown that the dispersion relations of all the
dense liquid alkalis even collapse onto one universal Q–ω-relation [80] if appropriately scaled.

As already shown in figure 12, the characteristic three-line structure of the spectra
gets continuously lost due to an overall broadening with rising temperature and decreasing
density. Figure 16 depicts this situation for Rb showing S(Q, ω)- and JL(Q, ω)-spectra at
Q = 1.3 Å

−1
for different thermodynamic states of the hot fluid. The data were obtained

from high temperature INS investigations [18]. The reduced densities ρ/ρcrit and hence the
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Figure 14. Dc conductivity in liquid caesium as a function of density along the liquid–vapour
coexistence curve: ◦, calculated values using Faber–Ziman theory [73];•, experiment [72]. Lines
serve as guides for the eye.

Figure 15. Mass susceptibility of liquid caesium measured along the liquid–vapour coexistence
line [76]. The line serves as a guide for the eye.

particle densities are now even smaller than for the states presented in figures 12 and 13
for sodium but the condition ρ � 3ρcrit still holds. However, the spectra show no unusual
properties. JL(Q, ω) is simple shaped, comprising one distinct maximum as is expected for a
conventional monatomic fluid. The collective excitations are highly overdamped and there is
no more chance to obtain information on the collective excitations directly from S(Q, ω), i.e. a
dispersion relation for the collective excitations can no longer be obtained from the scattering
law. However, a dispersion relation of the current–current correlation is easily constructed. For
some temperatures such functions are shown in figure 17. They show an oscillatory behaviour
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Figure 16. S(Q, ω) (•) and JL(Q, ω) (◦) of liquid rubidium for different temperatures close to
the liquid–vapour coexistence curve [85]. The solid lines in the figure serve just as a guide to the
eyes.

which fades with rising temperature and the frequency more and more increases monotonically
with Q. Gradually, the curves approach the free gas limit where ω is directly proportional to the
momentum transfer (as can easily be shown from equation (5.6)) if the temperature is raised.

The dispersion relations show a distinct minimum around Q0, the position of the structure
factor maximum, indicating that velocities of neighbouring particles are correlated. In other
words, in reciprocal space one observes a general slowing down of the particle dynamics
around the main peak in S(Q). For the quasielastic line which represents the diffusive
dynamics of the particles this is well known as the so called de Gennes [82] narrowing.
With increasing temperature and correspondingly decreasing density the minimum shifts to
smaller Q, representative of a slight increase of next neighbour distances. Also, the minimum
gradually disappears, indicating the continuous loss in velocity correlation due to increasing
temperature and decreasing density, as is expected in approaching the free gas limit. The
first maximum of all the dispersion relations has a value of about 5 meV. The corresponding
Q-value symbolizes the first quasi-Brillouin zone boundary. This point in reciprocal space
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Figure 17. Dispersion of the longitudinal current correlation for some explored thermodynamic
states: �, 320 K; �, 1073 K; �, 1373 K; ◦, 1723 K. The data at 320 K are taken from
literature [29]; the data at the higher temperatures are taken from [81]. The dashed lines serve
as guides for the eye; the solid line corresponds to a calculation [83] at 1700 K.

represents next neighbouring ions moving in an out of phase oscillatory motion. The associated
frequency value can hence be viewed as a measure of the interparticle forces between next
nearest neighbours in the liquid. This value does not change during expansion, indicating that
the particle interactions remain essentially unchanged, i.e. the forces between the ions are still
controlled by the metallic binding from the delocalized electrons along the temperature/density
range displayed in figure 17. The observed variation in the curves is hence a pure temperature
and density effect and there are no indications for a characteristic variation of the particle
potentials due to a reorientation of the electronic density distribution. The solid line in figure 17
shows the result of a calculation at 1700 K [83] where the viscoelastic model (equation (4.7))
was employed together with S(Q) obtained from a hypernetted chain approach. As already
discussed above the viscoelastic model is representative of a monatomic simple liquid. The
agreement between the calculation and the measured 1727 K data is hence another indication
that the dynamical features of the high temperature fluid have still the same origin as under
melting point conditions. Electron localization has not yet the dominant influence on the short
range correlations.

If the density is further decreased and values close to twice the critical value (0.61 g cm−3,
1873 K) are approached, drastic changes are observed in S(Q, ω) and consequently in
JL(Q, ω). A well defined peak appears in the scattering law centred around 3.2 meV with
maximum intensity at about 1 Å

−1
. The corresponding spectra are shown in figure 18. Their

shape is now in great contrast to the findings at higher density and lower temperature (see
figures 12 and 16).

The distinct shoulder in S(Q, ω) is only visible along a narrow Q-range, which is
consistent with a simple model for an assembly of non-interacting diatomic harmonic
oscillators [6, 37]. For temperatures as high as 1873 K the model has the simple form

S(Q, ω) =
∞∑

n=−∞
In(y)e−yδ(ω − nω0) with y = h̄2 Q2kBT

M(h̄ω0)2
. (4.10)

Here, the In(y) are modified Bessel functions of the first kind and nth order, h̄ω0 is the energy
difference between adjacent energy levels of the oscillating particle and the δ-function under the
sum ensures energy conservation during the interaction between the neutron and the molecule.
Inserting the observed value of 3.2 meV and the reduced mass M for a rubidium dimer yields
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Figure 18. Experimental S(Q, ω) and JL(Q, ω) for fluid rubidium at Q = 1 Å
−1

for ρ ≈ 2ρcrit

(1873 K). Data are taken from [7]. The solid lines are the result from fitting a set of three Lorentzians
to the data.

Figure 19. Q-dependent intensity for a peak in S(Q, ω) resulting from a vibron excitation of a
Rb2 dimer at 3.2 meV and a temperature of 1873 K (equation (4.10)).

the Q-dependence of the excitation intensity, which is shown in figure 19. In fact, the peak
corresponding to the vibrational excitation (vibron) of such a particle shows a distinct maximum
in Q-space, which is centred around Q = 1 Å

−1
, in accord with the experimental finding. This

analogy makes it tempting to speculate that molecular aggregates of some sort may form in the
dilute fluid, consisting of atoms performing out of phase oscillations similarly as in a Rb2 dimer,
which is well known to exist in the gas phase. This interpretation is also consistent with the
density dependence of the mass susceptibility in figure 15. While χg increases with decreasing
density below 3ρcrit, an additional decline is observed beyond twice the critical density, which
can be interpreted as resulting from spin pairing due to the formation of molecular aggregates
with localized bonds.

The peak in the scattering law can also be identified in JL(Q, ω), where higher harmonics
are also indicated (see figure 18). The pattern in the current correlation spectra (and
consequently in S(Q, ω)) can be nicely reproduced using a set of three Lorentzians, one for
the quasielastic contribution and two to model the excitation and its first harmonic (solid lines
in figures 18).
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Figure 20. Current correlation spectra of fluid rubidium at 1873, 1923 and 1973 K and Q =
1.2 Å

−1
[81]. Distinct excitations are visible, superimposing JL(Q, ω). Solid lines are fits of three

Lorentzians to S(Q, ω).

If the temperature is further raised additional variations are observed. The peak in S(Q, ω)

is no longer visible, while the pattern in the current correlation functions remains. It is visible
over a wider Q-range from ∼0.8 Å

−1
to ∼1.4 Å

−1
with a maximum intensity at 1–1.2 Å

−1
.

As examples, figure 20 shows current correlation spectra at 1.2 Å
−1

for densities ρ � 2ρcrit,
at temperatures of 1873, 1923 and 1973 K, respectively. Again, the solid lines represent fits of
a set of three simple Lorentzians to the data. No dispersion of the excitations is found, which
again can be valued as an indication of the localized nature of the vibron. However, a slight
shift to higher frequency with rising T is observed.

In order to get additional theoretical support for the suspected molecular species
responsible for the observed pattern, exploratory calculations employing a simple model were
undertaken: the total energy of expanded lattices for monatomic Rb and Rb2 dimers at 0 K
were carried out, using density functional theory (DFT) in the local density approximation
(LDA) [84–86].

Calculations were made for a system of Rb atoms in a body-centred lattice (bcc) and
for diatomic molecules in a simple cubic lattice (sc). To create the diatomic solid the two
atoms in the bcc unit cell were moved towards each other, forming a simple cubic lattice (sc).
The lattices were then continuously expanded and the total energy was calculated for several
densities, also taking into account the dimer bond length in the molecular lattice, which was
varied for energy minimization. It was found that for densities below 0.9 g cm−3 the molecular
lattice has the lower energy. Interestingly, this is again about ∼3ρcrit of the corresponding fluid.
From the bond length variation the oscillator potential could be obtained along the explored
density range. A Morse potential [87] was then fitted to these functions, giving the density
dependence of the vibron energy, h̄ω0, and the respective dissociation energy. Figure 21 shows
the density variation of the vibron energy obtained from this procedure (open squares). The
experimental point in the gas at ρ = 0 g cm−3 [88] connects smoothly with the calculations at
higher density. Also shown in figure 21 are the experimental vibron energies taken from the
spectra in figure 20, which are in good agreement with the calculations.

The dissociation energy is also found to decrease with increasing density from the gas
phase value down to zero near 0.9 g cm−3. The decrease of the vibron and dissociation energy
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Figure 21. Density variation of the vibron energy h̄ω0 for Rb2 in a molecular crystal [81]: �,
DFT calculation; •, experimental data; �, Rb2 vibron from the gas phase [88]. The dashed line
serves as a guide for the eye.

with rising ρ is nowadays a well established feature, also found in optical studies on solid
molecular hydrogen [89] and nitrogen [90]. It is believed to be associated with the transfer of
electron charge towards neighbouring molecules, leading to a softening of the molecular bond
and the formation of a monatomic state.

The variations in the scattering law which are observed when the density of a liquid alkali
metal is reduced to values below 3ρcrit are indisputable and there is no question that they
must be related to the localization of the conduction electrons and the associated change in
the interparticle interactions. We have also seen that some simple models are able to describe
the observed phenomena implying the formation of molecular structures in the expanded hot
fluid. Apparently, the pattern observed in S(Q, ω) and in JL(Q, ω) results from an out of
phase oscillation of bound atoms in such aggregates, similarly as in dimer molecules, which
are well known from the dilute alkali vapours. However, there are still some incongruities
which hamper a quantitative understanding of the density dependent microscopic processes.
For instance, the ongoing variation of the scattering law with further decreasing density below
0.61 g cm−3 towards ρcrit remains incomprehensible (e.g. the disappearance of the shoulder
in S(Q, ω)). A possible explanation could be that two competing effects must be taken into
account: while the progressing localization of conduction electrons supports the formation of
molecular structures the associated rise in temperature favours dissociation. However, this
gives no quantitative explanation for the observation why in contrast to the S(Q, ω)-spectra
the pattern in the current correlation spectra remains visible along the whole explored density
range. It is rather sensible to assume a continuous density dependence of the specific molecular
structures which after sufficient expansion may transform into the well known dimer states.

Additionally, the models used to describe the observed features are highly oversimplified,
e.g. the DFT calculations on the Rb solids were carried out at 0 K disregarding thermal effects,
whereas it has already been mentioned in the introduction that temperature plays an important
role regarding the composition of the fluid.

In order to unravel the temperature and density dependent processes on the microscopic
level in more detail, a variety of intensive computer simulations were carried out. Kahl and
Kambayashi [91] have tried to reproduce the shape of the scattering law of liquid rubidium
in MD simulations employing interatomic potentials based on pseudopotential theory. In the
lower and intermediate temperature range they found good agreement between the calculations
and the experimental data. The simulations were extended to 1873 K; however, they were not
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Figure 22. Snapshot of the ion positions in liquid rubidium at ρ = 0.58 g cm−3 and T = 1923 K;
ions are full circles and the electron density increases from violet over white to red.

able to reproduce the spectral pattern. This is not unexpected since their approach was based
on the nearly free electron model, which is not capable of accurately describing the complex
variations in the electronic structure associated with the metal to non-metal transition below
3ρcrit. Munejiri and co-workers [8] have also explored the density range of liquid rubidium
up to conditions in the vicinity of the liquid–vapour critical point. They tried to obtain the
interparticle interactions employing the so called inverse method, where very accurate S(Q)

data are needed as input. They were also unable to reproduce the experimental S(Q, ω)

pattern shown in figure 20. They attributed this disagreement to the uncertainties in the
employed structural data. Another route is chosen in first principle approaches at realistic
thermal conditions. The advantage of these methods is that it is no longer necessary to
construct potentials for the complex electronic structures in the density regime where electron
localization is the dominant effect: ab initio calculations on expanded liquid sodium were
carried out by Bickham et al [92]. They could nicely reproduce the expected drop of the
dc conductivity close to the critical point and they also observed aggregation of the Na ions
into short living clusters in the low density regime. Alemany et al [9] have recently carried
out first-principles molecular dynamics studies on liquid rubidium at 1873 K using DFT. As a
result they observe the formation of transient aggregates consisting of four to five particles with
lifetimes of several vibration periods. The ‘terminal’ ions of these aggregates are separated
by about 10 Å and they perform mutually out-of-phase vibrations with respect to the ‘central’
ion. Interestingly, a vibration frequency of 3.5 meV is obtained which is in nearly quantitative
agreement with the experimental finding from the INS investigations. Similar calculations were
recently also preformed by Ross et al [10]; however, the calculations were performed with
slightly more computational effort, i.e. smaller time steps, larger plane-wave cut off radius and
more particles per supercell. Also, the calculations were carried out for several density states
between melting and the liquid–vapour critical point, including the experimentally accessed
states mentioned above. Similar observations were made as in the aforementioned DFT work.
At about twice the critical density, cluster-like structures of four to five ions begin to form,
piling up a considerable amount of electronic charge between the constituent rubidium atoms.
The lifetime of these aggregates extends over several vibrations. Figure 22 shows as an example
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the situation at 1923 K with ρ = 0.58 g cm−3. The electron density in the figure is indicated
by colours ranging from violet (low density) over white to red (high density).

At the critical point density, however, the simulations clearly indicate the existence of
stable rubidium dimers where all the electron density is located between the bonded atoms.

The INS and IXS results on fluid rubidium and caesium together with the computer
simulations give a pretty clear picture about the processes that take place in a liquid alkali
metal: at sufficiently high density the liquid is clearly monatomic. Below three times the critical
density, the screening breaks down and the conductions electrons start to localize. The more
duplet states are formed with increasing temperature and decreasing density, a rising tendency is
observed to stabilize the electronic structure in localized bonds. Close to ρcrit all the electrons
are localized and the system may be represented by a thermal equilibrium between bonded
atoms, freely moving ions and thermally ionized particles. The tendency to form singlet states
in the expanded fluid may also be viewed as an analogy to a Jahn–Teller effect or a Peierls
distortion. Due to the instability of the degenerate states at the Fermi surface, the system
transforms into a structurally distorted state, forming localized bonds. The data shown here
imply that such a mechanism may in some way participate in the metal to non-metal transition
in the fluid alkali metals.

5. The influence of density on the single particle motion

As already mentioned above, inelastic neutron scattering also allows us to obtain information
on the individual dynamical properties of the liquid particles from analysing the incoherent
scattering law. Experimentally, Sincoh(Q, ω) can be accessed by different methods: only in
very few cases is the nuclear scattering sufficiently incoherent to be directly measured, e.g. in
vanadium or in hydrogen dominated samples. If the incoherence results from different spin
states of the sample nuclei, coherent and incoherent scattering contributions can generally be
separated employing spin polarization techniques which are available at specific scattering
instruments, e.g. the D7 spectrometer of the ILL in Grenoble [93]. If on the other hand the
incoherency results from the isotopic composition, correspondingly enriched samples need to
be used, which however is often extremely costly and therefore in many cases not feasible. If
the incoherent contribution is sufficiently large it is also possible to subtract appropriate models
for the coherent scattering law. The latter method has been employed in the investigation of
liquid sodium [94, 95] where the coherent and incoherent scattering cross sections are of the
same order (σcoh = 1.66 barn, σincoh = 1.62 barn [96]). At small momentum transfer, the
incoherent spectra are narrow with large amplitude but decrease and broaden with rising Q,
maintaining their integral value,

Sincoh(Q) =
∫ +∞

−∞
Sincoh(Q, ω) dω = 1. (5.1)

However, the coherent contribution is small in the lower Q-range and increases towards the
structure factor maximum. Hence, at not too large momentum transfer the incoherent scattering
contribution dominates if both cross sections are at least of similar order as is the case for liquid
sodium.

According to equation (3.7), the most direct theoretical approach to the incoherent
scattering law is possible if adequate models for the self part of the van Hove correlation
function Gself(r, t) are available. For two idealized systems such models can easily be
constructed: the most simple and most prominent expression for a suitable van Hove function is
given by the solution of Fick’s second diffusion law, which describes the motion of a Brownian
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Figure 23. Incoherent scattering spectra for liquid Na at three different temperatures close to the
liquid–vapour coexistence curve [95]. Each spectrum corresponds to the lowest attainable Q-value.
Open circles are experimental data; solid lines represent Lorentzians fitted to the spectra.

particle in space and time:

Gself(r, t) = 1

(4π Dt)3/2
exp{−r 2/4Dt}. (5.2)

Here, D is Fick’s coefficient of diffusion. The corresponding Fourier transform then reads

Sincoh(Q, ω) = 1

π

DQ2

ω2 + (DQ2)2
. (5.3)

Hence, the scattering law is a simple Lorentzian with halfwidth DQ2 and the diffusion constant
can directly be obtained from experiment. However, it must be kept in mind that Brownian
motion is a macroscopically observable process of large and heavy particles, which takes
place on long time- and length scales. Thus, the scattering law (5.3) is exactly valid only
in the limits Q → 0 and ω → 0. However, the real limits need not be approached in the
experiment to determine the diffusion constant with sufficient accuracy since the scattering law
retains its Lorentzian shape up to momentum transfers which are available in ordinary inelastic
neutron scattering experiments. This is illustrated in figure 23, where some experimental
spectra from an investigation on liquid sodium are shown [95]. The measurements covered
a temperature range between melting conditions (Tm = 371 K, ρm = 0.98 g cm−3) and 1773 K
(ρ = 0.58 g cm−3), where the density is reduced to about 60% of its melting point value,
corresponding to about 4ρcrit. The spectra in figure 23 represent the lowest Q-values attainable
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Figure 24. Variation of the reduced halfwidth γ (Q) of liquid Na close to melting. Triangles
represent experimental data [94, 97], open circles are from MD-simulation [98] and the solid line is
the result of a kinetic theory [99]. The long dashed line gives the free particle behaviour of γ (Q).

in the respective experiments. Spectra are shown for different temperature/density states along
the liquid–vapour coexistence curve between melting and 1773 K (see also figure 3).

A useful quantity to characterize the progressive deviation from the Lorentzian line shape
with rising Q is the so called reduced halfwidth γ (Q), which is defined as the ratio of the
experimental halfwidth to the expected value for Brownian motion:

γ (Q) = ω1/2(Q)

DQ2
(5.4)

The continuous departure from γ (Q) = 1 with increasing momentum transfer is hence a
measure of the progressive deviation of the real diffusion dynamics from the simple Brownian
picture if decreasing time- and length scales are probed with rising Q. In most cases γ (Q)

decreases with momentum transfer if Q is not too high, i.e. the real halfwidth broadens more
slowly than predicted by (5.3). However, the complete Q-dependence is more complex and a
rather oscillatory behaviour is found, which is depicted in figure 24 for a wider Q-range. Data
shown are taken from experiment [94, 97], from MD-simulation [98] and also from a mode
coupling approach [99].

At the other extreme, at large Q and large ω the probed time- and length scales are too
small for the particles to interact and Gself(r, t) can be approximated by the behaviour of free
particles. The trajectories of such particles are linear and their momenta obey a Maxwellian
distribution. An averaging in momentum space then gives [35, 36]

Gself(r, t) =
(

M

2πkBT t2

)3/2

exp

{
− Mr 2

2kBT t2

}
, (5.5)

with Fourier transform

Sincoh(Q, ω) =
(

M

2πkBT Q2

)1/2

exp

{
− Mω2

2kBT Q2

}
. (5.6)

I.e., in that limit the scattering law comprises a Gaussian shape in ω. It is easily shown that the
reduced halfwidth is now ∝ 1/Q. It is also given in figure 24 as the long dashed line.

Apparently, the scattering law transforms from a Lorentzian line shape in the Q → 0
limit to a Gaussian behaviour at sufficiently large momentum transfer. However, the exact



R622 Topical Review

Figure 25. (a) Reduced diffusion coefficient D/DE versus reduced volume V/V0 = √
2/nσ 3. (b)

Density dependence of the mode-coupling contribution �̃MC versus reduced volume. Circles are
experimental data on Na, the solid line represents the hard-sphere result [102], and dotted lines give
corresponding temperatures for states close to the vapour pressure line in liquid sodium.

Sincoh(Q, ω) in the intermediate region which connects the two limits is unknown. Models
for this range where the short range interactions between the particles determine the motional
behaviour and where γ (Q) increases towards the free particle limit are much more difficult to
obtain.

The easiest theoretical approach to an understanding of the diffusive motion in liquids is
the Enskog model [100], which assumes that the particles behave like hard spheres interacting
solely through binary collisions. The diffusion coefficient is then given by

DE = 1

16

√
πkBT

M

σ

ηg(σ )
. (5.7)

σ is the hard sphere diameter of the particles and g(σ ) = (1 − η/2)/(1 − η)3 is the
pair correlation function related to the packing fraction η = πnσ 3/6, with n being the
number density. The advantage of equation (5.7) is that the density dependence of the
diffusion coefficient is easily computed if corresponding values for the hard sphere diameter
are available [67]. However, MD simulations on simple hard sphere systems [61, 101] show
that the diffusional dynamics is considerably more complicated as predicted by (5.7). The
real particle dynamics of the hard spheres is controlled by complex correlations and collisions
where more than just two particles are involved. The microscopic processes ruling the particle
motion are also found to depend characteristically on density. This is illustrated in figure 25(a),
where the ratio of the diffusion constant normalized to the corresponding Enskog value is given
as a function of liquid volume per particle, scaled to close packing volume V0 = nσ 3/

√
2.



Topical Review R623

Figure 26. Formation of a vortex pattern in the velocity field around a diffusing particle at
intermediate density as obtained from a hard sphere MD simulation and from a hydrodynamic model
(after [61]). The arrows represent the velocity field around the particle (grey sphere, moving from
left to right).

If Enskog theory applied D/DE should be equal to one for all volumes (dashed line);
however, figure 25 shows that the real diffusion coefficient deviates considerably from
this prediction. The solid line represents results from a computer generated hard sphere
system [102]; the open circles are obtained from the aforementioned neutron scattering
investigations on liquid sodium [95]. The agreement between simulation and experiment is
excellent, indicating that the diffusion dynamics in liquid sodium can be nicely approximated
to be hard sphere fluid-like, at least along the temperature/density range investigated so far.
At high density, close to melting, the forward motion is considerably hindered, while at
slightly reduced density, corresponding to boiling conditions, processes set in which support
the translational motion of the diffusing particle. On a purely qualitative basis this behaviour
can already be understood: at high density the free diffusion is hindered by a more or less
rigid sphere of next neighbours surrounding the particle under consideration. This is the so
called cage effect, which introduces a negative contribution into the velocity autocorrelation
function also in a pure hard sphere system. On the other hand, at lower density an examination
of the particle trajectories from computer simulation studies [61] reveals that a diffusing atom
generates a vortex pattern of the velocity field in its immediate vicinity which couples to its
translational motion and adds an additional contribution to the particle diffusion (see figure 26).

5.1. Theoretical aspects

In order to put the understanding of the density dependence of the diffusion coefficient on a
more quantitative basis it is necessary to go one step deeper into the theoretical framework of
microscopic single particle dynamics.

The diffusion of a tagged particle is determined by the velocity auto-correlation function
(VACF), which is characteristic for each system and defined as

�(t) = 〈�υi(0) · �υi(t)〉
〈�υi(0)〉2

. (5.8)

Here, �υi is the velocity vector of particle i and the brackets again denote an ensemble average.
This function can directly be obtained from computer simulations, since there the positions
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and momenta of all particles are known at all times and the ensemble averaging can easily be
performed. In an experiment, however, one measures the macroscopic diffusion coefficient D
which is related to the integral value of the VACF [103]:

D = kBT

M

∫ ∞

0
�(t) dt . (5.9)

In analogy to equation (4.4), the VACF can be obtained from solving a corresponding
generalized Langevin equation

�̇(t) = −
∫ ∞

0
�(t − t ′)�(t ′) dt ′, (5.10)

where �(t) now represents the memory function of the velocity autocorrelation. However,
the drawback of equation (5.10) is once more that the memory function �(t) of the VACF is
a priori not known, which is again the key problem to understand the single particle motion.
Although we saw above that the microscopic motional dynamics is unquestionably much more
complicated than predicted by the simple two particle collision theories, it is known from
computer simulations that the main contribution to the memory function still comes from these
processes. This contribution is given by a simple Gaussian decay in time [103]:

�(t)B = ω2
Ee−t2/τ 2

. (5.11)

ω2
E is the Einstein frequency defined in equation (3.19) and τ is the characteristic time constant

for binary collisions. It is usually of the order of a tenth of the Enskog time [36].
We can interpret the integral in equation (5.9) as the Laplace transform of the VACF at

z = iω = 0:

�̃(z = 0) =
[∫ ∞

0
�(t)ezt dt

]
z=0

=
∫ ∞

0
�(t) dt . (5.12)

Also, in Laplace subspace, the generalized Langevin equation (5.10) reads

�̃(z) = 1

z + �̃(z)
. (5.13)

Combining equations (5.9), (5.12) and (5.13) gives

D = kBT/M

�̃(z = 0)
, (5.14)

which correlates the memory function of the velocity autocorrelation directly with the
experimentally accessible diffusion constant. The expression resembles the well known
Einstein relation for Brownian motion, which relates the diffusion coefficient to the
macroscopic friction coefficient of the liquid in the same way. If the Laplace transform of
equation (5.11) were used in equation (5.14) the Enskog diffusion coefficient would again be
obtained. However, as we saw earlier, the real diffusion constant of a simple liquid deviates
from the Enskog prediction and the computer simulations suggest that more complicated
correlations are also involved. These further correlations are taken into account by an additional
term to the memory function:

�(t) = �B(t) + �MC(t). (5.15)

While �B(t) determines the particle’s behaviour on very short times due to binary collisions,
�MC(t) rules the motion on longer timescales. The exact form of this additional term can again
be obtained from computer simulations but for some examples it was also established within
the framework of mode coupling theory (MCT). The problem of these approaches however—at
least from the viewpoint of neutron scattering—is that MCT does usually not provide a direct
access to the scattering law. On the other hand, other quantities which are accessible from
experiment may be available, for instance the diffusion coefficient D and also the reduced
halfwidth γ (Q).
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Figure 27. Memory function of the VACF �(t) of liquid Na close to melting: ◦, computer
simulation; – – –, short time contribution �B(t); · · ·, MCT contribution �MC(t) (equation (5.16));
—, �B(t) + �MC(t).

5.2. Microscopic diffusion at high density

As already indicated above, the computer simulations show that �(t) decays considerably
slower than predicted by equation (5.11). Theoretically, this ‘long-time behaviour’ is accounted
for in the additional term �MC(t) appearing in equation (5.15). It was suggested by Balucani
and co-workers [104] that at high density the main contribution to this term stems from a
coupling between collective density fluctuations and the diffusive motion. In order to account
for the reduced diffusion constant compared to DE it was furthermore suggested to couple
the forward motion specifically to the slow oscillation modes which appear with wavevector
Q0 (minimum in the dispersion relation, also see figure 6). As a side-effect, this also leads to a
considerable simplification of the theoretical formalism and the following form for the memory
function is obtained:

�(t) = ω2
Ee−t/τ + kBT

6nMπ2

A

S(Q0)
[FS(Q0, t) − F0(Q0, t)]F(Q0, t). (5.16)

In equation (5.16), FS(Q0, t) and F0(Q0, t) are respectively the intermediate scattering
functions of the single particle motion and the well known free particle limit, F(Q0, t) is
the intermediate scattering law containing the collective modes. Q0 denotes the position of
the main maximum in S(Q). The constant A represents the integral over the correlation
function h(Q) = S(Q) − 1. The validity of this approach was demonstrated in comparing
�(t) obtained from equation (5.16), employing the models in equations (5.3), (5.6) and (4.7) to
compute the intermediate scattering functions, with the direct result of an MD simulation [98]
on liquid sodium close to melting where the potential in equation (1.2) has been used. A
nearly quantitative agreement between the two functions was found, which is shown in
figure 27. At small times �(t) decays according to equation (5.11), while at larger times the
additional contribution due to equation (5.15) becomes visible. This is clear evidence for the
coupling to collective longitudinal modes which is responsible for the extension of the memory
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Figure 28. Reduced halfwidth γ (Q) = ω
exp
1/2/DQ2 for Na at (a) 380 K and at (b) 900 K. Solid lines

are MCT results [104, 106]; open circles represent experimental data [95, 97].

function to longer times. Of course, this additional contribution also appears in the Laplace
transform of equation (5.16) and hence causes a decrease of the diffusion coefficient D due to
equation (5.14).

From the simulation the diffusion coefficient can quantitatively be obtained and a value of
DMD = 0.426 × 10−4 cm2 s−1 is found, which is in perfect agreement with the value obtained
from the neutron experiment (Dexp = 0.423 × 10−4 cm2 s−1). Furthermore, both values are in
good accord with the literature value from Meyer and Nachtrieb (DLit = 0.406×10−4 cm2 s−1),
obtained using the capillary reservoir technique [105].

Additionally, the theoretical approach also allows a prediction of the reduced halfwidth
γ (Q) and a quadratic deviation from γ (Q) = 1 is obtained:

γ (Q) = 1 − c(n, T )Q2; c(n, T ) = 0.074 Å
2
. (5.17)

This behaviour is also in quantitative agreement with the experimental observation as can be
inferred from figure 28.

The coupling to longitudinal collective modes seems to be essential in describing the exact
diffusional behaviour at high density: the tagged particle oscillates with frequency ωE in the
cage of next neighbours, resulting in a contribution to the memory function which is given
by (5.11). However, the actual forward motion is accomplished by coupling to a longitudinal
collective mode which carries the particle together with its immediate surroundings from one
place to the other. It is interesting to note that the situation is similar to the description of the
collective dynamics where two processes were also needed for an adequate memory function
to model the density–density correlation.
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5.3. Self-diffusion at intermediate density

At 900 K and slightly decreased density, at a state which corresponds to the boiling conditions
of liquid sodium, the processes ruling the diffusive motion seem characteristically to change
as is inferred by figure 25(a). The coupling to longitudinal modes seems no longer to be
appropriate. Instead it has been proposed to assume a coupling to transverse modes. This
view is motivated by the findings from an older computer simulation carried out by Alder
and Wainwright about 30 years ago [61] where the formation of a vortex pattern around the
diffusing particle has been observed as is illustrated in figure 26, which was taken from this
work.

The coupling to transverse modes was additionally considered in an MCT ansatz by
Wahnström and Sjögren [106]. An explicit Sincoh(Q, ω)-model has been developed by
de Schepper and Ernst [107] taking into account only transverse fluctuations. Theoretically,
the scattering law can then be obtained from the generalized Langevin formalism employed on
the intermediate scattering function:

ḞS(Q, t) = −
∫ ∞

0
M(Q, t ′) · FS(Q, t − t ′) dt ′ (5.18)

which in Laplace subspace reads

F̃S(Q, z) = 1

z + M̃(Q, z)
. (5.19)

As an ansatz to solve equation (5.18) a Q- and z-dependent diffusion constant was introduced
in imitation of the hydrodynamic picture to express the corresponding memory function:

M̃(Q, z) = Q2 D(Q, z). (5.20)

This results in a simple form for the scattering law:

Sincoh(Q, ω) = 1

π
Re

(
1

z + Q2 D(Q, z)

)
. (5.21)

Instead of making assumptions for a passable memory function, the problem is now to find
an adequate diffusion coefficient D(Q, z) in order to calculate the appropriate scattering law.
However, it is assumed that this quantity is given by the classical value of the diffusion
coefficient DE plus an additional term δU(Q, z) which contains the required modification to
match the experimentally observed value [107]:

D(Q, z) = DE + δU(Q, z). (5.22)

δU(Q, z) is then calculated in the framework of mode coupling theory, where however only
coupling to transverse modes are regarded. Although the exact derivation of this term is highly
sophisticated, the theory finally allows us to quantitatively calculate the diffusion coefficient
D and again the behaviour of the reduced halfwidth γ (Q) in the lower momentum transfer
range. For liquid sodium at 900 K a diffusion coefficient of DMC = 0.217 × 10−4 cm2 s−1

is obtained from this approach, which is again in good accord with the experimental neutron
result of Dexp = 0.298 × 10−4 cm2 s−1 at the same temperature [95]. The deviation of the
reduced halfwidth from γ (Q) = 1 is now found to be linear:

γ (Q) = 1 − bQ, (5.23)

and for b, theory predicts a value of b = 0.16 Å. Again, a nearly perfect agreement between
experiment and theory exists as can be seen from figure 28(b).

Again, the excellent agreement between experiment and theory shows that the microscopic
processes ruling the diffusive dynamics are far from simple binary collision behaviour. Instead,
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coupling to transverse modes explains the diffusion quantitatively. It should also be noted
that this view is complementary to the MD observation of a vortex pattern in the velocity
field around a diffusing hard sphere which also supports forward motion (see figure 26). This
coupling is now an additional process which becomes important mainly for the diffusive motion
of the single particle, while for the collective dynamics no characteristic variations in the
distinct motional behaviour is observed at these thermodynamic conditions.

5.4. The low density liquid

Figure 25(a) shows that with decreasing density (increasing volume) the reduced diffusion
coefficients of both experiment and computer simulation gradually return towards the predicted
Enskog value. Apparently, with decreasing density, mode coupling contributions cease to
exist and the dynamics is progressively determined by simple binary collisions. Using
equation (5.15) in equation (5.14) the diffusion coefficient can be expressed in the following
way:

1

Dexp
= �̃B

kBT/M
+ �̃MC

kBT/M

⇒ �̃MC = kBT/M

Dexp

(
1 − Dexp

DB

)
.

(5.24)

Identifying DB with DE we can now calculate the volume dependence of the mode coupling
contribution. This is shown in figure 25(b). At high density, the mode coupling term is large
and positive, causing the real diffusion coefficient to decrease below the classical Enskog value.
At V/V0 ≈ 1.4, �̃MC becomes negative, i.e. Dexp > DB. At very high temperature and
correspondingly large volumes the mode coupling contribution decreases and finally ceases to
exist. However, extrapolating the full line in figure 25(b) until it matches the Enskog value
(D/DE = 1), i.e. where the dynamics is solely determined by binary collisions, conditions are
reached which no longer correspond to the liquid state of sodium.

Generally, one can say that the actual value of the macroscopic diffusion constant is
ruled by microscopic processes which can be identified as a coupling of the diffusive mode
to collective excitations. The exact mechanism depends on density. In the dense melt, the main
contribution comes from a coupling to longitudinal fluctuations which are mainly responsible
for the overall forward motion of the particle. A slight reduction of the density suffices for
a second mechanism, a coupling to transverse density fluctuations, to now becomedominant,
leading to an enhancement of the mean propagation speed. The coupling mechanisms are
however only effective at sufficiently large density. With increasing volume the coupling
disappears and the dynamics is gradually determined by simple binary collisions.

6. Conclusion and perspective

With the presentation of the above given data we have tried to give a comprehensive view of the
dynamic properties of the fluid alkali metals in order to characterize the microscopic particle
motion along the full density range between melting and the liquid–vapour critical point. One of
the most striking particularities of this group of liquids is the distinct ability to sustain collective
modes down to wavelengths on the atomic scale. Although this ability is nowadays known to be
a general feature of all liquids and specifically of liquid metals, the collective dynamics in the
molten alkali metals is especially pronounced. In no other liquid do the collective excitations
appear as such distinct peaks in the scattering law and extend to such high Q-values. One
explanation for this has already been given in section 4, bringing up the influence of the CP/CV

ratio in these systems. However, this is just a phenomenological observation and does not lead
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to an understanding of the underlying physics. As already mentioned in the introduction, the
origin of this property is rather related to the specific interatomic interactions in the alkali
metals. They differ considerably from those in other liquids and also from those in other liquid
metals. Alkali metals are perfect model systems to be treated within the view of free and
nearly free electron theories. This means that the electron system can adequately be described
using bare Coulomb potentials screened by relatively simple functions. This view also leads
to the well known characteristic shape of the pseudo-potentials, with their distinct oscillatory
behaviour with rising distance. It is tempting to also relate the particular particle dynamics in
liquid alkali metals to simple free electron systems. In fact, such approaches have been known
for a long time, e.g. the acquainted Bohm–Staver model [108], where the dielectric function
of the electron gas determines the ionic fluctuations in the lower Q-range. The predictions
of this model were recently compared to INS results on molten potassium [109] and molten
alkali metal alloys [110]. Some qualitative agreement was found; however, a quantitative
conformity leading to a generalized understanding of the collective dynamics in molten alkali
metals was not observed. Nevertheless, the data presented here show that the specific nature
of the particle motion remains unchanged as long as the density is not reduced to below a
specific value at which considerable variations are also observed in the magnetic and electronic
properties, indicating the breakdown of the delocalized electron system. Up to these conditions
of temperature and pressure the dynamical features are obviously determined by the same kind
of forces, resulting from the metallic binding between the particles.

In the investigation of the diffusional properties in liquid sodium the thermodynamic
conditions necessary to enforce the radical variation of the interparticle interactions due to
the breakdown of the metallic regime were not reached. Therefore it was only possible
to describe the single particle motion in liquid sodium in analogy to a computer generated
model system of hard spheres over wide density ranges, because there the metal to non-metal
transition was certainly not taken into account, too. The same observation was made for
the collective dynamics, where the general features remain more or less unchanged, only the
relevant relaxation mechanisms become faster due to the increasing temperatures, leading to an
overall broadening in S(Q, ω) (section 4.3).

Principal changes in the dynamics are finally observed when the screening breaks down
and the electrons settle at their parent ions (section 4.4). The susceptibility then shows a distinct
rise, indicating the increasing number of local magnetic moments. However, the rising number
of identical spin 1/2 states then leads to another instability and the system tends to minimize
its energy by spin pairing and finally by formations of molecular units. With further decreasing
density the dissociation energy of these units increases, indicative of the rising stability of these
particles. At sufficiently reduced density stable molecules are formed which in the gas phase
can be identified employing methods of optical spectroscopy.

The fluid alkali metals are a highly interesting system showing a rich variety of physical
phenomena which are not yet understood on a quantitative basis. The continuous ‘chemical’
transformation with varying density is still not fully unravelled and a lot still needs to be
done.

There is also much to do in order to fully comprehend liquid dynamics on the microscopic
scale in general. However, the current technological progress raises hope to solve many of the
longstanding questions in the near future: computer simulations become more and more real-
istic due to the rapid increase in computing power allowing us to use larger and more realistic
particle numbers in MD simulations. Also, ab initio methods become more and more reliable.

The situation is similar on the experimental side: the quality of the currently available
neutron and x-ray data has considerably improved due to many technological developments
over the last 10 years and the progress is still continuing. One example is the advent of the new
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third generation synchrotron over the last ten years. Promising hope is also set on new radiation
sources, e.g. the modern powerful spallation facilities which are currently being installed as
e.g. the second target station at ISIS in the UK, the SNS in the USA or the new J-PARC neutron
source in Japan. A lot of expectations are also focused onto the new free electron x-ray sources
which are currently being developed and which are expected to be available within a few years.
The prospect to use faster computers and new experimental radiation sources in the near future
is highly motivating, and perhaps some of the still standing questions in liquid dynamics may
then be solved. Through this review we tried to emphasize that an exact understanding of
the particle behaviour in liquids on the microscopic time- and length scale is still lacking and
that our current knowledge is based primarily on phenomenological considerations. Whilst the
physical picture appears to be quite clear in the hydrodynamic regime, where the characteristic
features of the scattering law are understood by means of the macroscopic transport coefficients,
many questions are left open in the domain where general hydrodynamics applies. Some still
open questions concern the accessibility of the transition Q-range from the hydrodynamic to the
generalized hydrodynamics regime. E.g., as already mentioned in section 4.3, an intermediate
Q-range may exist where the propagation speed of the collective modes changes from adiabatic
to isothermal before approaching the momentum transfer region where the so called anomalous
dispersion sets in (see section 4.4). For many liquids this Q-range can be estimated to lie at
or below about 0.1 Å

−1
. It is therefore hardly accessible in conventional x-ray or neutron

experiments and there is hence no clear evidence for its existence although weak experimental
indications obtained from a neutron investigation on molten Ni exist [111]. This metal is
particularly interesting in this respect because it comprises a relatively large value for γ , the
ratio of the heat capacities. Hence, the transition from the adiabatic to the isothermal mode
propagation should be clearly distinguishable in this liquid metal. Although the investigation
of this system is not easy due to the high melting temperature and the still existing problems in
accessing the appropriate Q-range, it is worth exploring in more detail because a fundamental
physical question is addressed here.

The accessibility of this Q-range would also allow exploring the detailed bending up of
the dispersion relation due to the increase of the mode velocity towards c∞ with rising Q and
ω. A possible explanation for this effect was given in section 4.4 within the framework of
extended hydrodynamics, where the rise of the propagation speed for the longitudinal modes
was related to the onset of shear forces at high frequencies. This view seems to be appropriate
for the liquid alkali metals; however, in other liquid systems the same explanation is not so
unambiguous. This is e.g. the case in molten ionic liquids, where the theoretically predicted
shear modulus [112] differs considerably from the experimental observation [113]. It must also
be emphasized that positive dispersions similar to those in liquids are also a well known feature
in glasses, which somewhat questions the interpretation of this effect in terms of a transition
from liquid-like to solid-like at sufficiently high frequency.

One big disadvantage of generalized hydrodynamics is its purely phenomenological
character and accordingly the memory functions are introduced. Exponential decays as used
to approximate many functions are only used to maintain simplicity in order to get the Q-
dependence of many dynamic quantities. The same is certainly true for the time constants in
the one- and two-relaxation-time models described here. However, the physical meaning of
these time constants remains nebulous and is still subject to speculation. From the viewpoint
of an experimentalist it would be highly preferable if theory tried to develop clear models for
memory functions which could directly be tested in comparison to experiment. Mode coupling
theory provides such a description on a clearer physical background (see e.g. [114]); however,
the theoretical framework often appears to be too bulky to be employed for the direct analysis
of experimental data.
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Another important aspect in the attempt to comprehend liquid dynamics is the question
of the thermodynamic state. As mentioned in section 2.1, the liquid state extends over wide
ranges of the thermodynamic variables. However, liquid dynamics is usually explored only
in the dense phase close to melting. Only a few examples exist where investigations were
extended along the full liquid state (see e.g. [1] and references therein). The main reason for
this deficiency is that often high temperatures and simultaneously applied high pressures are
needed, which make such experiments a very difficult task. Nevertheless, it would be preferable
if inelastic scattering experiments were extended over the full density range of the liquid state.
This could lead to highly interesting results, especially in those systems where density is not
the only order parameter, but where state dependent variations in molecular structure and/or
the interparticle interactions are expected [1, 115]. For this, however, it would be necessary
to develop new and powerful sample environments capable of running for several days even
under extreme conditions of temperature and pressure. For other experimenting techniques
such experimental set-ups exist (see e.g. [116]) and it would be highly interesting to also adopt
these techniques for their use in neutron- and x-ray scattering experiments.
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